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I N T R O D U C T I O N  

Visualization programmers need a close-to-the-hardware, powerful 2D and 3D graphics toolkit to 
create applications that handle large amounts of data well. OpenGL is the most portable system 
for 3D graphics card programming, and thus is a common language for many visualization 
applications. Scott Dillard has said of the OpenGL graphics library bindings in Haskell:  

The library is fantastic. I don’t think it gets enough fanfare. The only other 
GL API that rivals it is the C API itself. Most other languages provide a 
shoddy and incomplete interface to that, instead of an idiomatic 
interpretation of the OpenGL specification. I can’t think of a single 
language, not even Python, whose OpenGL bindings come close. 

OpenGL is powerful, but it can also be more complicated than actually necessary.  For 
applications involving 2D graphics, a low amount of interactivity, and a smaller amount of data, it 
would be simpler not to bother with the video card and the rendering pipeline. Additionally, 
some visualizations are meant for print form.  The Gnome Foundation’s Cairo 2D graphics toolkit 
is perfect for these applications.  As luck would have it, Haskell also has an excellent binding to 
Cairo. 

Three other things make Haskell ideally suited to information visualization and visual analytics: a 
well-thought out and extensible library of generic data structures, lazy evaluation, and the 
separation of data transformation code from input/output inherent in a pure functional 
programming language. Visualizations written in Haskell tend naturally to break up into portions 
of reusable and visualization specific code. Thus, programs for visualization written in Haskell 
maintain readability and reusability as well or better than Python, but do not suffer the 
performance problems of an interpreted language. 

For much the same reason as Simon Peyton-Jones put together Tackling the Awkward Squad, I 
have put together these lecture notes. I hope these will bring a programmer interested in 
visualization and open to the aesthetic advantages of functional programming up to speed on 
both topics. 

F U N C T I O N A L  P R O G R A M M I N G  

A lazy functional programming language such as Haskell has practical effects that reduce the 
programmer’s concern over minutia that are irrelevant to the larger task at hand. Namely, it 
expresses concurrency and takes advantage of parallelism without the programmer having to 
bother with barriers, threads, shared data, and IPC. It is capable of loading, unloading, processing, 
and storing complex data structures on demand without complicated support structures, caching, 
and loading schemes. It enforces separation of data transformation from data presentation. It 
makes debugging easier for a variety of reasons, one being type-safety and compiler-time strict 
type checking. Finally, recursive data structures, such as graphs and trees, can be naturally 
expressed and traversed in functional programming languages without loss of efficiency.  

V I S U A L  A N A L Y T I C S  

Traditional scientific visualization is primarily concerned with showing structured data about 
events or phenomena in the physical world. Earthquakes, supernovae, ocean currents, air quality, 
wind-tunnel tests, hydrodynamics; the models generated by scientific simulation or studies of our 
environment or ourselves are the concern of scientific visualization.  
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Information visualization and visual analytics are a bit different.  Information visualization 
concerns itself with representing knowledge, facts, and the structures we use to order these facts. 
Graphs, charts, maps, diagrams, and infographics aim to illustrate clearly found relationships in a 
manner more efficient and more elucidating than, or complimentary to lengthy articles or papers.  

Visual analytics extends this notion to add the visual element to the process of data mining. Visual 
analytics applications take raw data and apply transforms iteratively (or recursively), allowing the 
user to see intermediate results of mining operations and direct the further application of mining 
techniques based on the results. 

In this tutorial, we will focus on visual analytics and information visualization. Haskell’s abstract 
data types map well to these applications. Once you master the simpler visualizations I present in 
this tutorial, you can, on your own, apply Haskell’s wide array of prepackaged data structures to 
look at the World Wide Web or the Facebook social network as a directed graph, at Amazon 
rankings as an ordered list, or other collections of data in sets or associative lists.  

P R E P A R A T I O N S  

Before you start this tutorial, I recommend that you install GHC 6.8.31, the latest version of the 
Glasgow Haskell Compiler (GHC) as of this writing, and while you’re at it, install GHC’s extralibs 
package as well. This will contain all the OpenGL and GLUT bindings as well as quite a few other 
things you will find essential as you follow along. You will also want to get the Cairo library from 
http://haskell.org/gtk2hs or from the tutorial’s website, http://bluheron.europa.renci.org/renci-
haskell. 

Other resources you may find helpful after going through this tutorial are: the OpenGL 
documentation for Haskell2, Yet Another Haskell Tutorial3, SPJ’s excellent Tackling the Awkward 
Squad4 essay on IO, concurrency, and exception handling, and finally the OpenGL blue or red 
book (known as the OpenGL SuperBible and the OpenGL Reference, respectively). 

G E T T I N G  O R G A N I Z E D  

Ben Fry’s recent book Visualizing Data argues for a particular process to developing visualizations. 
I find it helpful in my own work, and therefore we’ll be using it here to structure our tutorial. 
Briefly, the process is: 

A C Q U I R E  •  P A R S E  •  F I L T E R  •  M I N E  •  R E P R E S E N T  •  R E F I N E  •  I N T E R A C T  

Acquire 
Obtain the raw data source, or a sample of the raw data source to construct your visualization. 

Parse 
Create data structure that is natural to any of: the underlying data, the way you intend to 
visualize the data, or the techniques you will use to mine the data. 

Filter 
Slice and dice, compress, and clean data until you have only the data you need to visualize.  

Mine 
Use data mining techniques or summary statistics to find patterns in the data. 

                                                                            
1 http://www.haskell.org/ghc  
2 http://www.haskell.org/ghc/docs/latest/html/libraries/  
3 http://en.wikibooks.org/wiki/Haskell/YAHT  
4 http://research.microsoft.com/%7Esimonpj/Papers/marktoberdorf/mark.pdf.gz  
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Represent 
Choose a visual model to represent your data. Use a bottom-up approach. Start simply and 
work up to more complex representations as needed. 

Refine 
Improve the representation until you have something you’re satisfied with. 

Interact 
Add tools for the user to interact with the visualization, and if necessary, add tools for the 
visualization to interact with the data stream.  

A C Q U I R E  

The internet is full of data. Life is full of data. Science is full of data. The most persistent problem 
for a data miner or a visualization professional is that people don’t understand why or when to 
visualize data. The second most endemic problem is that people often don’t know what data they 
have.  

Information visualization is about presenting and supporting conclusions visually. Showing 
patterns that are non-obvious, or associating data in ways that elucidate aspects of the data’s 
structure. Visual analytics is about answering questions progressively. The goal is to give the 
researcher a visual tool before s/he has come to the final conclusions about the data. Although 
inferences can’t be directly supported by visualization (the gestalt of scientific research today is 
that statistics or proofs are required to back up conclusions, not pictures), the process of a 
scientist mining his or her data can be directed by these tools, especially when data structure gets 
complex. 

Most people have trouble understanding what can be useful and usable to a visualization or data 
mining person, and so omit from their catalogue quite a lot of what they think won’t be helpful to 
you. If you’re working with people rather than just finding your data on the internet, you’ll need 
to ask questions.  

The first question to ask someone interested in applying visual analytics, is, “What kinds of 
questions are you interested in answering?” You’ll get a general answer, and this won’t be 
sufficient or directed enough to create a single visualization from, but hopefully from there you 
can ask narrower and narrower questions until you have something you can bite off. 

After that, the question becomes “What’s the data I have to work with?” You’ll often get the 
answer, “We don’t really have anything.” This is almost never the case. Create a mental prototype 
of what the visualization that answers their question looks like. Think of what data you would 
need to come up with to create the visualization. Ask for that. It’s much easier to acquire data if 
you can be specific in what you want. I once almost missed several gigabytes worth of useful text 
documents in a data mining job, because the owner of the documents didn’t think I could use 
them because they weren’t in an SQL database. It took careful directed questioning to get them 
to realize what they had. 

Internet acquisition is somewhat easier. The web is its own enormous dataset, of course, as are 
the various social networks out there. The US Government website, USGS, and CIA FactFinder 
have interesting data to play around with to get your chops. If you’re creating visual analytics 
tools for a client, it’s often desirable to create mashups using their data as well as new data from 
the internet that is related in some way to what they’re doing. 
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P A R S E  

The raw data you have can be as complicated or as simple as you like, but I’m going to suggest a 
couple of basic structures for storing data on disk that can get you by in many (if not most) 
situations.  

First and foremost, there’s the regular delimited text file, stored in either row or column major 
format. If you have statistical or numerical data you are going to process without the need for 
excessive querying, insertion, or deletion capability, this is an excellent format to put your data 
into, even for databases of several gigabytes in size. Yes, it’s wasteful, but it’s easy to read into 
Haskell, and usually easy to create from existing datasets. While tempting to build, a structured 
database won’t save you anything unless you are going to use the same data repository outside 
of the visualization. 

As an efficiency tip, it’s best to store chunks of data you intend to process as a set as lines on a 
disc, as Haskell can read these lines lazily. This is backwards from the way you normally work on a 
spreadsheet: 

Name Rank Salary Service Years  
Smith Field Agent 50000 4 
Jones Field Agent 50500 5 
Calhoun Director 120000 21 

Instead, you would store the data thusly: 

Name Smith Jones Calhoun 
Rank Field Agent Field Agent Director 
Salary 50000 50500 120000 
Service Years 4 5 21 

Then the following function will read a text file stored in this format (tab delimited) and lay it out 
into a dictionary where each row can be accessed by the name stored in the leftmost column: 

 

import Data.List (foldl’) 

import qualified Data.ByteString.Lazy.Char8 as BStr 

import qualified Data.Map as Map 

 

readDatafile name = do 

    sheet <- (map (BStr.split ‘\t’) . BStr.lines) `fmap` 

             BStr.readFile name 

    return $ foldl’ go Map.empty sheet 

  where go m (x:xs) = Map.insert (BStr.unpack x) xs m 

 imports, aliases (1-3) 

 

 

 

 

 Split all lines in the file. (6-7) 

 

 

 Insert them into the map (9) 

Trust me – you’ll want to cut and paste that somewhere. It’s a useful function. What would you do 
if the file were, say, 16GB though? It certainly won’t fit all into memory. In a language like C or 
Python, you’d have to rewrite the function so that it didn’t read the entire file at once, but in 
Haskell you don’t. You can use this same function for any tab-delimited file of any size, because 
Haskell will only load the data as it is needed, and because the garbage collector will throw out 
the data after it has been processed. That’s the beauty of laziness.  

What’s more, we’re using something called Lazy ByteStrings, which allow Haskell to read 
enormous amounts of data as quickly as it can be done in the best implemented C functions5. 

                                                                            
5 See http://cgi.cse.unsw.edu.au/~dons/blog/2008/05/16#fast on writing reliably fast Haskell code. 
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We’re talking about hundredths of a second difference between the two. You won’t write an 
entire visualization in Haskell only to have to port the code to C later for performance reasons. 

Because this is such a nice and versatile function, I’m going to say it makes sense to extend the 
notion, for now, of using a regular delimited file to deal with hierarchically structured data. Yes, 
you may want to use XML to store your hierarchical data instead, and you are welcome to, but for 
the sake of not adding APIs to the tutorial beyond OpenGL, It will do to create two files: one for 
the linkage relationships between nodes, and one for the data at each node.  

Each row in the linkage file will contain a parent’s in the left column. The names of the children 
will follow in the remaining columns. In the other file will be the data associated with each name, 
row by row, with the individual data elements appearing in columns, much like a traditional 
spreadsheet organization. I have included an example file on the web for this kind of dataset, as 
well as functions to turn it into a tree of data. 

There are other formats out there, of course, such as text, rich text, images, XML, and NetCDF (for 
regular scientific data), as well as packed binary formats of all different sorts. These formats 
require special treatment, and we won’t be covering them in this tutorial. 

The function that I wrote earlier brings the data into Haskell’s heap as a map of raw ByteStrings. 
We need to get that into data we can use. If a datatype is not a string, but still fairly simple (that is, 
an integer or floating point number, an enumerated type, or anything else Haskell’s “read” 
function can handle), then a fairly simple function will suffice to turn a list of ByteStrings into a list 
of usable data: 

 

import qualified Data.ByteString.Lazy.Char8 as BStr 

 

 

toData :: Read a => [BStr.ByteString] -> [a] 

toData = map (read . Bstr.unpack)  

map applies its argument to all 

the elements of a list..  read 

turns a string into data. 

Bstr.unpack forces the data to 

be read from disk. 

This function handles most cases, and it’s so short, it’s often more convenient to just write it inline. 
Any primitive except a string can be read by it, including any user defined types that are declared 
to be “readable” (we’ll see how to do that in a minute). Creating Strings instead of ByteStrings is 
accomplished by removing the read . from inside the parentheses (and changing the 
prototype) to toData :: [BStr.ByteString] -> String . It’s amazing how many datatypes 
in Haskell are just readable by default: parenthesized tuples of readables are readable, as are 
bracketed lists of readables, record types of readables, and even recursive types containing 
readables, making the simple delimited file much more powerful that it sounds on the surface: 

 

data RecordType =  

  Record { enum :: EnumeratedType 

         , value :: [Float] 

         } deriving (Ord, Read, Show) 

 

let list = [1,2,3,4,5,6] 

let tuple = (One,Two,Three,Many 4,Many 5) 

                         

Declare a record type like a C 

struct. 

 

Declare it readable/writable. 

 

[1,2,3,4,5,6] is readable. 

 (One,Two…) is also readable. 
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data EnumeratedType =  

    One  

  | Two 

  | Three 

  | Many Int 

  deriving (Ord, Read, Show) 

Specifying instances of these declared types in your file 

is as simple as writing instances of them like you would 

in your source code. 

 

 

This line declares it readable 

 

There are of course situations where this basic format doesn’t suffice, and Haskell has tools for 
those. Parsec is a library that comes with GHC by default which allows the user to construct 
parsers. Happy and Alex are Haskell tools similar to yacc and lex. Also well supported are 
validating and non-validating XML parsing at various DOM levels and HTML parsing. The learning 
of these tools, however, is left as an exercise for the reader. 

The structure that you end up with will likely be reflected by your visualization, and in the way 
you construct the visual representation. If you build a tree, you will obviously want to use 
visualizations appropriate to a tree, but you will notice that you can construct the visualization by 
walking the tree in some natural manner, such as a fold or a map. 

F I L T E R  

One of the beautiful things about laziness in a programming language is how short this section of 
the tutorial can be. There are situations where you want to filter your data because it’s easier to 
conceptualize, but filtering is less a question of removal than it is structure. If your data is 
structured properly, laziness will take care of not loading too much nor doing too much 
processing.  

Only as much of your data structure as you actually use will ever be constructed, which can save 
on time, and can allow you to write code more generally than you would in another language, 
because you don’t have to worry about unnecessary processing taking up time that could be 
used in your visualization. For record types, this means that only the individual fields of the record 
that are accessed will ever be constructed. For recursive types, such as trees and lists, only as far 
into the structure as you descend will ever be constructed. Even in some instances arrays can be 
lazy, evaluating elements only as they need to be evaluated.  

M I N E  

Aside from the excellent implementation of OpenGL, mining is the reason to use Haskell for 
visualization. The functions in Data.List, Data.Set, and Data.Map, in fact, give you most of the 
tools you need to mine data for visualizations. These three together support the following types 
of operations on lists, unique item sets, and associative dictionaries (similar to Python or Perl 
dictionaries, and known in Haskell as maps): 

• Transformations (mapping) 
• Reductions (folding) 
• Programmed Construction (scans, accumulation, infinite lists, unfolding) 
• Merging (zip, union, intersection, difference, and other common set operations) 
• Extraction (sublists, splits, and partitions using indices or predicates) 
• Search and Lookup 
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Most data mining functions can be reduced to combinations of mathematical functions applied 
using these operators. For example, clamping a value between a high point and a low point and 
mapping it to a value between [0,1], linearly is: 

 

clamp1 :: Floating a => a -> a -> a -> a 

clamp1 lo hi val = (val – lo) / (hi – lo) 

 

clamp :: Floating a => a -> a -> [a] -> [a] 

clamp lo hi = map (clamp1 lo hi) 

Prototype 

Clamp the value from low to hi. 

 

Similar prototype, but note the last parameter and 

return are lists.  map  makes clamp work on lists. 

The same thing can be done with Data.Map.map and Data.Set.map; these functions take, 
instead of lists as their arguments associative maps and unique item sets.  

The following function will compute the basic sample statistics: max, min, mean, variance, and 
sample standard deviation, often needed for performing normalization of the data, or comparing 
two different datasets: 

 

stats :: (Ord a, Floating a) => [a] -> (a,a,a,a,a,a) 

stats (x:xs) =  

  finish . foldl’ stats’ (x,x,x,x*x,1) $ xs 

 

stats’ (mx,mn,s,ss,n) x = ( max x mx 

                          , min x mn 

                          , s + x 

                          , ss + x*x 

                          , n+1) 

 

finish (mx,mn,s,ss,n) = (mx,mn,av,va,stdev,n) 

  where av = s/n 

        va = (1/(n-1))*ss – (n/(n-1))*av*av 

        stdev = sqrt va 

Prototype 

 

Data.List.foldl’ does a reduction with an 

accumulator. 

The elemental step that adds the 

element x to the accumulator 

 

 

 

 

Calculate the mean, the variance, and 

the standard deviation from the values 

stored in the accumulator 

And finally, the next function will compute paired t-tests for two datasets, using the results of the 
function for computing sample statistics: 

 

pairedTTest left right =  

  (x1-x2) / sqrt ( s1**2/n1 + s2**2/n2 ) 

  Where (_,_,x1,_,s1,n1) = stats left 

        (_,_,x2,_,s2,n2) = stats right 

 

Paired t test 

Max and min are never computed, because they’re 

never used.  Yay laziness. 

Quite a lot of the time, 99% of your mining process is simply getting the data into the structures 
you’re going to use. Much, then, can be inferred from building the data structures, and with 
Haskell’s lazy evaluation, you can specify as much as you want to be inferred without worrying 
about its impact on the performance of the program. The inferences will only take place when the 
user somehow needs them in the display.  
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R E P R E S E N T  

Since I started programming visualizations in Haskell, I have developed a working pattern for 
building the visual elements from scratch. It involves four steps:  

1. Create functions to transform your data structure into geometry. 
2. Write functions that render that geometry. 
3. Define the mutable state of the program. 
4. Create a master render function to render the scene, which is sensitive to OpenGL’s 

selection mode and renders only the selectable elements when called in this mode. 

The first thing you want to do is create some rules for turning your data into geometry. Generally, 
you will create some structure of 3D or 2D vectors and possibly material and color information 
that can be used later in the actual rendering function, or passed through another transformer to 
do something interesting to the geometry (like force-directed layout algorithms) before 
rendering it. If your geometry’s structure mirrors the structure of your data, then you can traverse 
them together in further computations, making it easy to transform geometry based on the data 
at hand. This is not as complicated as it sounds: 

The preceding function creates a perfectly round tree with leaves spaced evenly along the rim 
and internal nodes positioned relative to the height and depth fields in the dataset. Note that the 
new DataGeometry Tree exactly mirrors the structure of the DataNode Tree. Also note that no 
graphics calls are actually made here.  

module DataGeometry where 

import DataNode 

import qualified Graphics.Rendering.OpenGL.GL as GL 

 

black :: GL.Color4 Float 

black = GL.Color4 0 0 0 1 

 

data Tree = Node { name :: GL.Name 

                 , vertex :: GL.Vertex3 Float 

                 , color :: GL.Color4 Float  

                 , left :: Tree  

                 , right :: Tree } 

          | Leaf { name :: GL.Name 

                 , vertex :: GL.Vertex3 Float 

                 , color :: GL.Color4 Float } 

 

polarGeometry rad n_leaves  

    (DataNode num height depth lt rt) = 

  Node (GL.Name num) (GL.Vertex3 r t 0) black lt’ rt’ 

  where  

    h = fromIntegral height 

    d = fromIntegral depth 

    r = h / (depth+height) * rad 

    t = (ycoord lt’ + ycoord rt’) / 2 

    lt’ = polarGeometry rad n_leaves left 

    rt’ = polarGeometry rad n_leaves right 

polarGeometry r n_leaves (DataLeaf num) =  

  Leaf (GL.Name num) (GL.Vertex3 r t 0) black 

  where t = 2*pi*(fromIntegral num)/(fromIntegral n_leaves) 

     

DatNode would be a user-

defined module. 

 

 

 

 

 

OpenGL geometry for a tree 

containing name for GL 

selection and a color. 

Left child 

Right child 

Leaf declaration has no 

childrent. 

 

 

Recursive case.  Creates a 

tree that minimcs the 

DataNode and DataTree 

structures.. 

 

 

 

 

Recurse. 

Recurse. 

Leaf case.  No recursion in 

this function.. 
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This is a layout function, which determines ahead of time where everything should be. Now, we 
can use the same geometry to create lines, points, and position labels or other, simply writing a 
function that traverses this geometry, the original data, and any other ancillary data we want to 
layout with it. After this, I write a function that will traverse the data and the newly created 
geometry structure together and produce OpenGL calls that will render the structure the way I 
want it rendered: 

 

import qualified DataGeometry as Tree 

import qualified Graphics.Rendering.OpenGL.GL as GL 

 

treeLines :: Tree.Tree -> IO ()  

treeLines (Tree.Node n srcV srcClr lt rt) = do  

    GL.color srcClr 

    GL.vertex srcV 

    GL.color ltClr 

    GL.vertex ltV 

    GL.color srcClr 

    GL.vertex srcV 

    GL.color rtClr 

    GL.vertex rtV 

    treeLines lt 

    treeLines rt 

    where ltClr = Tree.color lt 

          rtClr = Tree.color rt 

          ltV = Tree.vertex lt 

          rtV = Tree.vertex rt 

treeLines (Tree.Leaf _ _ _ _ _) = return () 

treeNodes :: Tree.Tree -> IO ()  

treeNodes (Tree.Node n v c lt rt) = do  

  GL.withName n $ GL.renderPrimitive GL.Points $ do  

                    GL.color c 

                    GL.vertex v 

  treeNodes lt 

  treeNodes rt 

treeNodes (Tree.Leaf n v c) = do 

  GL.withName n $ GL.renderPrimitive GL.Points $ do 

                     GL.color c  

                     GL.vertex v 

 

 

 

Prototype 

 

Set drawing color, 

Draw head vertex, 

 

Draw left child vertex, 

 

Draw head vertex, 

 

Draw right child vertex. 

 

 

Define variables used above. 

Note that lt and rt are in 

the next level of the tree 

 

Don’t draw from the leaves. 

Nnodes are different; we 

want to make them 

selectable using 

GL.withName. 

 

 

 

Piecewise define leaf case 

 

If function after function to create new data structures 
sounds inefficient, keep in mind that laziness works in your 
favor. While conceptually, you will create a brand new tree 
that contains geometry for every bit of your data structure, 
and each new transformer you layer onto that data 
structure will also create a brand new tree, the effect in the 
program is more akin to piping parts of single data points 
through transformers only when they’re needed. It’s likely 
that the new data structure will never be stored in memory 
at all.   

I generally create a separate module to encapsulate the program state code and the event 
handler functions. This contains a datatype called ProgramState (you can use anything, but this 
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is what I do), which is a record type containing everything that would look like a mutable global 
or instance variable. In your main program, you will create an instance of IORef ProgramState 
and pass it as the first argument to all of your callbacks. This will allow the callbacks to each do 
their own internal record keeping on the state of the program and preserve state between calls.  

Your master render function will actually do the job of setting up OpenGL, setting up the scene 
parameters, and then calling the render functions for your individual visualization elements, 
usually creating display lists for the more complex elements. You’ll be calling the render function 
from multiple places, notably the event handlers. You’ll also be calling it for multiple purposes, 
such as rendering into the selection buffer. Because of this, you should make this the function 
that can analyze the current program state and render what ought to be displayed to screen 
completely, depending on nothing else. Finally, you will want to include the render function itself 
inside your ProgramState object; I use the name renderer for this. 

R E F I N E  

The reason that the process of refining your visual presentation is listed before interaction is 
because you will generally cut out a few visual elements once you get your visualization on 
screen, and you may also decide to add a few. Refining your presentation is generally considered 
the hardest part of visualization in Haskell. Type safety and strict compile-time type checking, if 
not properly accounted for in some way, can make for a programmer having to salt and pepper 
their entire codebase with minor changes to fix typing.  

This step is the primary reason that I’ve developed the pattern I have in creating visualizations. By 
separating program state from rendering, rendering from geometry, and geometry from data 
structure, as well as creating a master rendering function that takes into account the entire scene, 
there is a minimum of hassle in changing one part of the code versus another.  

The main reason for the refine step is that you don’t want to, as Ben Fry puts it, “build a cathedral.” 
If you try to do everything at once, you’ll often be disappointed; the person you’re doing the 
visualization for won’t need all of what you give them, you’ll be late delivering it, and end up 
having to change things anyway. By starting with the mindset that you’re going to develop 
visualizations incrementally, your code will be more flexible and you’ll be able to create and 
deliver visualizations on-time that do everything they’re supposed to. 

I N T E R A C T  

To make any visualization useful, it has to interact with the user in some way. One of the handiest 
things about GLUT, the GL User’s Toolkit is that it has easy to understand bindings for event 
handlers and some basic windowing capabilities. With the introduction of FreeGLUT6, GLUT no 
longer requires that it has full control of the program’s main loop, and therefore it can integrate 
with other user interface toolkits. In the old days, GLUT was used primarily as a teaching tool for 
OpenGL, but the functionality it contains is so useful that until you manage to develop an 
application in which you can see GLUT will not suffice, I recommend it for all OpenGL 
development. It is portable, reasonably small, and easy to program for. GLUT in Haskell is 
contained in Graphics.UI.GLUT. 

Often, there is only one handler to write, the mouse-click/keyboard handler. The GLUT prototype 
for it looks like this: 

                                                                            
6 http://freeglut.sourceforge.net  
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 KeyboardMouseCallback :: Key -> KeyState -> Modifiers -> Position -> IO () 

We will actually prepend this prototype with an IORef ProgramState, so we can manipulate 
and save the program state inside the callback. You will define this function piecewise. Another 
beautiful thing about Haskell is that you can often replace complicated case and nested if 
statements from other languages with a piecewise definition of a function. Now I’ll deconstruct 
that prototype from above. Let’s say you want to respond to all individual letter keys, left clicks, 
and right clicks of the mouse. We’ll ignore control, alt, and shift for now: 

 

kmc :: IORef ProgramState -> KeyboardMouseCallback 

 

The first parameter of the function is an instance of GLUT.Key. When the event is a keyboard 

character, the istannce of GLUT.Key is GLUT.Char,  the character is bound to the variable c.  You 

can handle pressing and releasing the key differently by repeating this instance and replacing 

GLUT.Down with GLUT.Up.   The mouse position when the character was pressed is bound to x and 

y.  The underscore is a “wildcard” parameter, meaning that we don’t care about the value of 

Modifiers. 

kmc state (GLUT.Char c) Down _ (Position x y) = do 

  st <- readIORef state 

… do something here to handle the individual keystroke … 

  state `writeIORef` st { … describe state changes here … } 

  render st $ state 

 

When a mouse button is pressed, GLUT.Key becomes GLUT.MouseButton.  If it’s the left button this 

is further specified to LeftButton, and if the button is currently Down, this function will be called.  

Note that if we didn’t care about the mousebutton, we could replace LeftButton with _, and any 

mouse button being down would trigger the function. 

kmc state (MouseButton LeftButton) Down _ (Position x y) = do  

  st <- readIORef state 

… do something to handle the left click … 

  state `writeIORef` st { … describe state changes here … } 

  render st $ state 

 

Note the only difference here between the previous function and this one is RightButton.   

kmc state (MouseButton RightButton) Down _ (Position x y) = do 

  st <- readIORef state 

… do something to handle the right click … 

  state `writeIORef` st { … describe state changes here … } 

  render st $ state 

 

This is the default case, which will be called if the event doesn’t match any of the other functions.  

This has to be last, as it will match anything.  Any unrecognized event will be processed by this 

function.  

kmc _ _ _ _ _ = return () 

Function prototype. 

 

 

 

 

 

 

 

Piecewise definition 1 

Read the state. 

 

Write the new state. 

Render, passing the 

new state. 

 

 

 

 

Piecewise definition 2 

 

 

 

 

 

 

Piecewise definition 3 

 

 

 

 

 

 

 

 

Pricewise Definition 4 

By placing a default definition at the end, you can define as much or as little event handling as 
you want. You could even create individual function definitions for all the different characters you 
are interested in handling. Defining these functions piecewise, however, doesn’t create a ton of 
tiny functions internally to bog down your program’s event loop; rather it is all combined into a 
single function in the compiler, allowing you to write code that’s reasonably easy to read without 
sacrificing performance.  
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A few notes of explanation about the code are due. Generally, you will: 

1. Read the state 
2. Handle the event 
3. Write any changes to the state necessitated by the event.  
4. Render the scene changes. 

In reading the state, the <- operator does two things (as opposed to the = operator, which you 
could use by mistake, although the compiler will catch you). First it draws the value out of the 
reference, creating an immutable copy of it. Second, it binds that immutable copy to st. This 
means that you can continue working on the state as it was when this click occurred: other clicks 
and state changes will not affect the way the function completes, and nothing this call of the 
event handler does will affect others running simultaneously. No locking, no semaphores, nor 
mutexes are needed.  

Handling the event is usually a matter of figuring out which state changes need to occur based on 
the value of st and what event happened. As soon as you’ve figured those out, write the changes 
back to the state. If you need to render because of the state change, after you’ve changed the 
state object is the time. 

Note that here is where we make use of having stored the master render function in the program 
state object. (renderer st) grabs the renderer element out of the state object. $ state 
causes the new state to be passed as the parameter to the master renderer. 

One final note about the order in which you define a function piecewise: cases are evaluated in 
the order that they’re defined. This means that you need to order your piecewise function 
definitions from the most specific to the most general. If you want to do something special on the 
value ‘c’, but all the other keyboard characters can be handled in the same fashion, define your 
case for ‘c’ first, before the general case. The last piecewise definition you create should be the 
default case, where all other inputs possible will fall. This will mean that your program doesn’t 
crash when the user does something you don’t handle explicitly. If you don’t define the final case, 
then bad user input will cause the program to abruptly quit without warning. 

GLUT defines other input-output handlers as well: mouse-motion (passive/active), tablet, joystick, 
and the less-used spaceball and dial-and-button-box callbacks. You can define these 
incrementally, using more or less the same pattern as the mouse/keyboard handler I wrote earlier.  

R E A D I N G  H A S K E L L  F O R  B E G I N N E R S  

While I don’t want to replicate the excellent work of others’ more in-depth Haskell tutorials, I do 
want to introduce enough of the syntax in this introduction to give you a feel for how to read and 
write the code yourself. This tutorial won’t give you the means to read every byte of code I’ve 
written for the tutorial, but it will give you an idea of what you’re looking at.  

First thing’s first. This is a functional programming language, so we should talk about functions. 
I’m going to start with our statistics functions from earlier: 

stats :: [Float] -> (Float,Float,Float,Float,Float,Float) 

stats (x:xs) = finish . foldl’ stats’ (x,x,x,x*x,1) $ xs 
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stats’ (mx,mn,s,ss,n) x = ( max x mx 

                          , min x mn 

                          , s + x 

                          , ss + x*x 

                          , n+1) 

 

finish (mx,mn,s,ss,n) = (mx,mn,av,va,stdev,n) 

  where av = s/n 

        va = (1/(n-1))*ss – (n/(n-1))*av*av 

        stdev = sqrt va 

   

On the first line, we see the prototype of the function. Like a C or Java prototype, this declares the 
name of the function (before the ::), the type of the parameters, and the return type. [Float] 
says that the function takes a list of Floats, which are regular, single-precision floating point 
numbers. (Float,Float,Float,Float,Float,Float) indicates that the function returns six 
Floats, which we can see in the code refer to the list’s max, min, mean, variance, standard 
deviation, and the number of elements. The return type always follows the last arrow.  

You don’t always need a prototype for a function, much like in C. The compiler can usually (but 
not always) figure out one for you. It’s advisable, though, to write them, both for your own 
understanding, and as help to the compiler. Your compile times will be shorter and the code the 
compiler produces will be better if you consistently write prototypes.  

On the next line, we see the definition of the function itself. Once again we see the name, 
followed by a funny looking thing, (x:xs). This is an argument pattern. What you actually see 
there is the list deconstruction operator, :. The : splits off the first element of the list from the rest 
of the list, and thus this pattern (x:xs) says that x is bound to the first number in the list and xs 
bound to the rest of the numbers in the list. Following the pattern is an = sign, which assigns the 
body of the function to the name stats, to be executed in the case that there is at least one 
element in the list, x (xs can be empty).  

The body of the function, finish . foldl’ stats’ (x,x,x,x,1) $ xs, is a little harder to 
read. The ‘ in foldl’ and stats’ is part of the name, first off, and is not an operator. The . 
operator refers to function composition, and the $ operator refers to something called a fixpoint, 
which is really a way to shove an evaluated argument through the functions to the left of the $. 
Function composition allows you to construct a larger function out of a series of smaller 
functions, allowing you to pipe a single element through a created pipeline. You could write the 
same code as (finish (foldl’ stats’ (x,x,x,x,1) xs)), but I think you’ll agree that’s 
less clear that way. Those of you familiar with LISP will recognize the syntax. The dot and dollar-
sign is how Haskell fixes it. It’s actually a little more complicated than that (there is a difference 
between $ and ., even if it doesn’t look that way on the surface), but the understanding you have 
will suffice for now. 

foldl’ works a bit like a for loop with an accumulated result. You hand it a function, an initial 
value, and a list. The function should take the accumulator value on the left and a list element on 
the right, and incorporate that element into the accumulator value, and finally return the 
accumulator value. foldl’ then uses this as the body of a for loop and builds the accumulator 
value up using each successive element of the list. At the end, it returns the accumulator. stats’ 
is the function I pass to foldl’, and as you can see, it follows the rules, taking the accumulator 
value on the left and a single float on the right.  

Finish is the final function, which takes the accumulator value that foldl’ returns and creates 
our final statistics out of it. In this case, the body of the function is simply the final value, 
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(mx,mn,av,va,stdev,n). Note that there is no return keyword in this language. This is because, 
conceptually, everything to the right of the equals sign is returned.  

Notice the where keyword on line 11. In Haskell, we can normally bind all variables that are used 
inside a function as an afterthought. This is much more readable than littering the function with 
variable declarations as they are needed, or having to worry about having a variable defined 
before it is used. The where keyword accomplishes this, binding all the variables used at once in a 
list at the end of the function. Note you can even have the definition of one variable depend on 
another, as long as you don’t create a circular dependency doing so. This is especially useful in 
more complicated functions where there are many intermediate results.  

Finally, note something I have not done. I never changed the value of a variable once it’s been 
assigned. That’s because you can’t. A variable’s value, once assigned, is fixed. As cumbersome as 
this seems like it would be, once you get used to it, it saves you from all kinds of nasty errors.  The 
fold and map family of functions generally handle the situations that arise that would cause you 
to change the value of a variable in other languages. 

There’s something else I haven’t addressed.  I/O. Lazy functional programming requires that you 
separate all input-output from the calculation of values.   Unless the only thing you plan on doing 
is a single input/output statement, you need a do keyword, and you’ll need to know that the 
function you’re writing must have its final return value be the current program state, known, 
conveniently as IO.   I/O is anything that must cause a write or read to memory, the screen, the 
network, a video card, a disc, anything.  So a GL.vertex is an I/O because it writes to the video 
card.  Assigning a new value to a reference in memory is I/O.  Printing to screen is I/O.   

This sounds complicated, and it does take a little while to get used to, however the savings in 
debugging time later are tremendous.  Anything that doesn’t do I/O, for example, can be 
executed in parallel without worrying about mutexes, semaphores, critical sections, and the like. 
Haskell allows you to take advantage of this in more advanced libraries.  Also, you can’t 
accidentally write over a piece of memory that is needed elsewhere, nor can you have an 
uninitialized value passed into a function.   

The reason you have to do things this way is because Haskell is lazy, and at some point, you’re 
going to have to make it do something.  Lazy operations don’t specify any ordering.  If your print 
statements and IO were lazy, you would have no way to control when a vertex went to memory or 
a frame got rendered to the screen.  Therefore these happen in the special IO type which is strict 
(the opposite of lazy). 

The do keyword is rather special.  For a complete example of it, go ahead and look at Appendix B’s 
render function.  First of all, do allows you to write successive lines of code that each do 
something separately from each other.  These will occur in sequence, from top to bottom, 
because of the do keyword.  This may look like we’ve completely changed languages to Python, 
but under the hood, do is just cleaning up something you could do using the Haskell we’ve 
discussed previously.  Namely, it threads an implicit argument through each line, which is the 
result of the computation performed by the previous line.  In this case, though, the result is the 
entire program state, which is also known as IO.  Since it would be ridiculously cumbersome to 
account for the entire program state at each line: each heap and stack variable, the state of 
memory, the video card, the operating system, open files, the file system and so on, all this 
information is crystallized inside of IO so you don’t have to think about it.   

Inside a do keyword, every line is an action, explicitly sequenced in line order (and yes, 
indentation matters). In the render function in Appendix B, some lines assign values to variables 
using the $= operator. Yes, I said earlier you can’t do that, and in fact what those lines do is look 
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up a reference in memory and write to that memory location. The value of the variable is the 
memory location, and that does not change. Some lines read the value of these variables. Some 
lines send vertices to the video card.  All these will happen in the same order that you read them, 
and as long as the main function calls render at some point, all of them are guaranteed to 
happen. 

Finally, I’ll talk about custom datatypes.  You see these everywhere in Haskell.  Anything with an 
initial capital letter is either a module or a datatype.  These are constructed and inspected using 
pattern matching like we mentioned before.   

data Vertex = Vertex1 Float  

            | Vertex2 Float Float 

            | Vertex3 Float Float Float  

This defines a simple vertex object that can be in one, two, or three dimensions and contains a 
single-precision floating point coordinate for x, (x,y), or (x,y,z).  You can use it in a function 
prototype or a case expression like this: 

translate (Vertex1 x) (Vertex1D by) = … 

translate (Vertex2 x y) (Vertex2D byx byy) = …  

translate (Vertex3 x y z) (Vertex3D byx byy byz) = … 

Or in a case expression: 

case vertex of  

  Vertex1 x -> x 

  Vertex2 x _ -> x 

  Vertex3 x _ _ -> x 

Note that all of the returns of the case statement return x.  All possibilities in a case statement 
must return the same datatype.  The next two datatypes are actually part of the Haskell 98 
standard: 

data Either a b = Right b | Left a 

data Maybe a = Just a | Nothing 

These two datatypes are parameterized.  Either can take any two custom datatypes, a and b, and 
return type a with a Left and type b with a Right.  This is often used in Haskell for exceptional 
cases, where Left represents some failure value and Right represents the proper result.  Then 
you use a case statement to handle the different values appropriately (keep in mind that you 
still have to return the same type after handling the failure as after handling the success, because 
of the rules of the case statement).  Maybe allows you to have uninitialized values – it takes the 
place of the null pointer that is so common in other programming languages.  The advantage of 
Maybe over some general undefined value, however, is that using it makes it explicit in the code 
that there’s a possibility of a null value, and forces you to handle the case separately: 

case parse str of  

    Left str -> “unparsable: ” ++ str 

  | Right tree -> show tree 

 

case parser language of  

    Nothing -> do fail “language not supported” 

  | Just parse -> do putStr . parse $ str 
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The previous two case statements call functions.  parse returns either a Left with the original 
string, which we prepend with “unparseable: “ or a Right with the tree structure.  We use 
show to convert the tree structure to string.  In the second, we have a function that looks up 
parsers based on the language input.  If there doesn’t exist a parser, we fail (inside IO, this 
constitutes an exception).  Otherwise, we bind parse to the parser function that is returned and 
print the parsed string to the screen. 

data Tree a b = Node a [Tree] 

              | Leaf b deriving (Show) 

This datatype defines a tree.  Note that the name is used on both the left and right sides of the 
equals sign.  A Node contains a data value of type a and a list of children of type Tree, which is 
either Node a [Tree] or Leaf b.  Leaf contains just a data value of type b.  The best way to go 
through this datatype is with a recursive function: 

mysum :: Tree Int Float -> Float 

mysum (Node x children) =  

  fromIntegral x + (sum . (map mysum) $ children) 

mysum (Leaf x) = x 

The next datatype we will consider defines a record type, like a C struct.  There are two ways to 
access the members of the structure, and one way to “modify” the individual members of the 
structure (they actually return a partially new structure – the old value will still be accessible, but a 
new structure with the new values will be returned, sharing as much memory as possible). 

data Triangle = Triangle { first :: Vertex 

                         , second :: Vertex 

                         , third :: Vertex } 

 

firstx t = case first t of  

              Vertex1 x -> x 

              Vertex2 x _ -> x 

              Vertex3 x _ _ -> x 

 

firstx1 (Triangle (Vertex1 x) _ _) = x 

firstx1 (Triangle (Vertex2 x _) _ _) = x 

firstx1 (Triangle (Vertex3 x _ _) _ _) = x 

 

translateAll n t = t{ first = translate n . first $ t 

                    , second = translate n . second $ t 

                    , third = translate n . third $ t } 

Defining Triangle creates three functions: first, second, and third, which take a Triangle 
and return the element of the structure of the same name.  Also, you can suffix a variable of type 
Triangle with { … } to change the values of the individual elements, as in the definition of 
translateAll.  Additionally, pattern matching can break down the internal structure of a record 
type, as in the second definition of firstx you see. 

The final datatype we will consider is a simple typesafe enumeration.  Note that we can derive 
instances of Ord and Show, which say that the ordering of the type is the same as the order we 
specified the type in, as well as defining a show such that show prints the names of the values as 
you see them: 
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data Frequency = Never | Sometimes | HalfAndHalf | Often | Always  

               deriving (Ord,Eq,Show) 

This is nearly everything you need to know to read most of the code in this tutorial.  One other 
miscellaneous rule that I haven’t covered is that of how to recognize infix operators (like +, -, /, 
and *). Any function whose name is composed of symbols rather than letters or numbers is an 
infix operator, and can take at most two arguments.  Also, any two argument function can be 
made to be infix by surrounding it with backquotes: `fun`.  Knowing these rules, you should now 
be able to read most, if not all of the Haskell code in this tutorial, and you can use the boilerplates 
I’ve supplied to write your own code.   

H A S K E L L ’ S  O P E N G L  I N T E R F A C E  

This is also not the venue for a full OpenGL Haskell tutorial; however I will give a brief introduction 
to OpenGL for 2D visualizations here and talk a little bit about the differences between the C API 
and the Haskell API, as well as how to read the reference material on the Haskell website. Later in 
this document is a boilerplate for building an OpenGL visualization.  The best tutorial you can get 
is to skim through the OpenGL SuperBible, working through examples here and there as they 
pique your interest. It is organized in more or less a progressive manner, giving you the tools to 
crank out basic scenes quickly.  

OpenGL is two things. First, it is a framework for specifying operations in a rendering pipeline. 
Second, it is a state machine that controls how these operations are processed. The general 
procedure for rendering a scene is: 

1. Set up the windowing system and create a GL context (GLUT does this) 
2. Set up state variables. 
3. Set up the projection matrix (also a state variable). 
4. Set up the model-view matrix. 
5. Pass some rendering commands through the pipeline. 
6. Flush the pipeline. 
7. Swap buffers. 

Steps 2-7 are repeated over and over for each frame of your scene. You only need to set up the 
windowing system once. Until you know what you’re doing with OpenGL, I would recommend 
the following GLUT call to set up your window: 

GLUT.initialWindowMode $ [GLUT.DoubleBuffer, GLUT,RGBA, GLUT.Depth] 

This will create a window that doesn’t flicker while you update it, allows you to create translucent 
objects, and can handle depth testing, which tells OpenGL to act intuitively when you’re working 
in 3D and some objects you specify overlap. Now for steps 2-7, I will try to give you the calls that 
will be most useful to the most people, which will make your scene look fairly polished by default.  

Can be the render callback  

 

Clear the screen to black 

Enable blending & smoothing 

 

Smooth lines 

Smooth points 

Smooth shape edges 

 

render = do 

Step 2. 

  GL.clearColor $= GL.Color4 0 0 0 1 

  GL.blend $= GL.Enabled 

  GL.blendFunc $= (GL.SrcAlpha, GL.OneMinusSrcAlpha) 

  GL.lineSmooth $= GL.Enabled 

  GL.pointSmooth $= GL.Enabled 

  GL.polygonSmooth $= GL.Enabled 
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Clear the backbuffers 

 

Set up the projection matrix 

Start with a fresh matrix 

Find the window reolution 

GL coords = window coords 

 

Set up the modelview matrix 

with a fresh matrix 

 

Without affecting our matrix  

set up in the future, render a 

white square of widh 100, 

starting at point (10,10) 

 

 

 

Flush the pipeline 

 

Show the drawing on screen. 

  GL.clear [GL.ColorBuffer, GL.DepthBuffer] 

Step 3. 

  GL.matrixMode $= GL.Projection 

  GL.loadIdentity 

  (_, GL.Size xres yres) <- GL.get GL.viewport 

  GL.ortho2D 0 0 (fromIntegral xres) (fromIntegral yres) 

Step 4. 

  GL.matrixMode $= GL.Modelview 0 

  GL.loadIdentity 

Step 5. 

  GL.preservingMatrix $ GL.renderPrimitive GL.Quads $ do  

    GL.color (GL.Color4 1 1 1 1 :: GL.Color4 Float) 

    GL.vertex (GL.Vertex2 10 10 :: GL.Vertex2 Float) 

    GL.vertex (GL.Vertex2 110 10 :: GL.Vertex2 Float) 

    GL.vertex (GL.Vertex2 110 110 :: GL.Vertex2 Float) 

    GL.vertex (GL.Vertex2 10 110 :: GL.Vertex2 Float) 

Step 6. 

  GL.flush  

Step 7. 

  GLUT.swapBuffers 

 

The matrices, by the way, set up your coordinate system. Here, I’ve done something a little 
unusual, which is considered bad-form by many OpenGL programmers, but I argue works in 
practice more often than not: the OpenGL coordinates are equal to the window coordinates. In 
2D, this is not really a big deal at all, and gives the beginning programmer a crutch with which to 
think about where things are in the window. Note OpenGL numbers from the bottom-left to the 
top-right, which means that y=0 is at the bottom edge of the window, while y=1 is above it. By 
default, all the coordinates go from zero to one, meaning that the bottom left is (0,0), and the top 
right is (1,1). If your window is square, this is fine, but it’s often not.  

Vertices are specified for a single polygon in counter-clockwise order. That is merely an OpenGL 
convention, and assures that the “front” of the polygon you draw is facing the user. This becomes 
important later when dealing with more complicated scenes involving texturing and lighting, but 
for now we’ll just mention that it’s good practice.   

Now to explain the COpenGL/HOpenGL differences. The first, and strangest thing that a veteran 
OpenGL programmer will notice is the lack of glBegin() and glEnd(). This is replaced in 
HOpenGL by renderPrimitive, which is used like this: 

 

renderPrimitive GL.Lines $ do 

  GL.vertex v1 

  GL.vertex v2 

  … 

Takes an IO () as a parameter, 

which we can substitute with an 

anonymous do block 

This formalizes the practice that the OpenGL manual suggests, that you indent code between 
glBegin and glEnd invocations, as if it were a function. Here, it is an actual function. Note that 
GL_LINES also becomes GL.Lines. This is the general pattern when it comes to constants. 
Anything that is prefixed by gl or glu has the prefix removed (we can qualify it with the module 
name GL instead), and underscores are elided using camel case. So, for example, 
GL_TRIANGLE_FAN becomes GL.TriangleFan. There are a few other places where this 
paradigm is used, such as glPushMatrix, which becomes GL.preservingMatrix, and with 
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selection mode (using GL.withName name). In general, look for places in OpenGL where you 
push something onto a stack before a glBegin. 

The next strange thing is that glEnable is gone, and most things that are considered part of the 
OpenGL machine’s “state” are encapsulated in something called a StateVar. The StateVars 
work like this: 

 

import Graphics.Rendering.OpenGL.GL ($=) 

import qualified Graphics.Rendering.OpenGL.GL as GL 

 

Set some state variables 

GL.lineSmooth $= GL.Enabled 

GL.blend      $= GL.Enabled 

GL.matrixMode $= GL.ModelView 0 

 

Get the value of state variables 

smoothing <- GL.get GL.lineSmooth 

(GL.Size xres yres,GL.Position x y) <- GL.get GL.viewport 

Grab just the $= symbol 

Everything else is GL.* 

 

 

Enable smoothing. 

Enable blending. 

Set ModelView matrix, level 

 

 

Get value of smoothing. 

LHS pattern matching binds 

variables from viewport.  

 

There’s a bit of trial and error involved in knowing what is a StateVar and what isn’t, but you 
start to get the feel for it after using HOpenGL for a little while.  

The last thing to get used to, which is actually rather an improvement rather than a mere 
difference between the two APIs, is the way vertices and vectors are specified. Haskell introduces 
type safety to this common task, letting you be explicit about whether you’re indicating a a Size 
value or a Vector value or a Vertex, etcetera, and also constrains these types so that only valid 
values can go in. These API constraints catch at compile time some of the “meters vs. inches” 
problems that are common problems in OpenGL code. Some common types are GL.Size, 
GL.Position, GL.Vector[2,3,4] a, Gl.TexCoord[1,2,3] a, and GL.Vertex[2,3,4] a, 
where a is a numeric type. You can find more types and more explicit documentation on where 
they’re used and what values they take in the docs for Graphics.Rendering.OpenGL. 
VertexSpec7 and Graphics.Rendering.OpenGL.CoordTrans8. 

This covers most of the OpenGL basics.  OpenGL can take months to master for visualization and 
years to master for creating realistic scenery for games, but getting your feet wet with it isn’t all 
that hard, and it’s the least crippled toolkit for graphics in existence.  You will not be working on a 
project in OpenGL and suddenly realize that there’s something that just cannot be done. 

  

                                                                            
7 http://haskell.org/ghc/docs/latest/html/libraries/OpenGL/Graphics-Rendering-OpenGL-GL-VertexSpec.html  
8 http://haskell.org/ghc/docs/latest/html/libraries/OpenGL/Graphics-Rendering-OpenGL-GL-CoordTrans.html  
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H A S K E L L ’ S  C A I R O  I N T E R F A C E  

A simpler interface than OpenGL to use in everyday situations is Cairo.  Cairo is limited to 2D 
graphics, and cannot handle interactivity or large volumes of data as well as OpenGL, but it is 
easier to export the data to the outside world, making it ideal for graphs, maps, charts, and other 
static or semi-static visualizations.  Unlike OpenGL, Cairo does not come with GHC.  I have 
supplied the latest version of Cairo for Windows and 32-bit Fedora Core Linux on the CD, but the 
Cairo distribution should generally be gotten off the Gtk2Hs project’s website9, which also serves 
up the full documentation10 for Cairo and Gtk2Hs. 

Cairo works on a stencil-and-paper model – the number one reason why it’s more intuitive than 
OpenGL.  It maintains an idea of where the pen is at all times, what color it is, the line width, and 
several other convenient things as part of its state.  All drawing is done on a flat sheet of virtual 
paper, known as a Surface. A surface can be a PNG image, an off-screen image, a PDF, a 
PostScript file, or an SVG (Scalable Vector Graphics) file.  The steps for rendering an image in Cairo 
are: 

1. Create a surface. 
2. Set up the paint color 
3. Pass rendering commands through the pipeline to create a stencil 
4. Transfer the stencil to the surface using the current paint color. 
5. If necessary, write the surface to disk. 

Steps 2-4 are repeated for every element in your scene.  You don’t have to enable smoothing or 
worry much about Cairo’s state unless you are doing something really complicated.  Most 
everything is set to sensible defaults for you.  The default coordinate space is in pixels for image 
surfaces and points (1/72in) for vector based surfaces like PDFs and SVGs.   

CCairo and HCairo are virtually the same except for the introduction of type-safe enumerations 
instead of C style enumerations and the ability to have Haskell temporarily allocate surfaces and 
automatically garbage collect them.  The API is also quite small, the complete documentation 
fitting into a single HTML file.  Let’s look at an example, which renders a 100x100 pixel black 
square with the text “Hello World,” to a PNG file: 

Note that the calls to C.fill actually draw the objects to the surface.  Until then, you are building 
a virtual “stencil”, which will be used to C.setOperator C.OperatorSource is a compositing 
operator, the documentation for which can be found on the Cairo website11, but basically, this 
determines how the current drawing state gets written onto the surface.  The most common 
operator is OperatorOver, which tells Cairo that any calls that draw should draw over what is 
already there, like pen on paper.   

  

                                                                            
9 http://haskell.org/gtk2hs/download  
10 http://haskell.org/gtk2hs/docs/gtk2hs-docs-0.9.12/Graphics-Rendering-Cairo.html  
11 http://www.cairographics.org/manual/cairo-cairo-t.html#cairo-operator-t  
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Import cairo qualified 

 

withImageSurface allocates a 

100x100 RGBA image called 

surf. 

Save cairo’s state. 

Sets how composting is done. 

 

Set the pen color to black. 

 

Create a rectangle. 

 

Fill in the rectangle. 

 

Set the pen to white. 

 

Select a font. 

 

 

Set the font size in points. 

Draw some text. 

 

Fill it in. 

Restore Cairo’s state. 

 

Write the result to file. 

 

import qualified Graphics.Rendering.Cairo as C 

Step 1 

main = C.withImageSurface  

  C.FormatARGB32 100 100 $ \surf -> do 

   C.renderWith surf $ do  

      C.save 

      C.setOperator C.OperatorOver 

Step 2 

      C.setSourceRGB 0 0 0 

Step 3 

      C.rectangle 0 0 100 100 

Step 4 

      C.fill      

Step 2 

      C.setSourceRGB 1 1 1 

Step 3 

      C.selectFontFace "Trebuchet MS"  

                       C.FontSlantNormal  

                       C.FontWeightNormal 

      C.setFontSize 18 

      C.textPath “Hello world” 

Step 4 

      C.fill 

      C.restore 

Step 5. 

   C.surfaceWriteToPNG surf "Text.png" 

 

C A I R O  E X A M P L E  :  S P A R K L I N E S  

A perfect example to show off how and when to use Cairo are sparklines.  Sparklines embed inline 
with text and show a reader an informative graph at quick glance whenever statistics are cited. As 
more and more typesetting systems are able to embed pictures with text, they are gradually 
becoming more common.  Our example will take a simple column from a tab-delimited file, like 
you might get out of Excel, and create a sparkline out of it with a given width, height, and 
resolution.  The sparkline will output as a PNG file, and can be used as a picture inside of Word or 
OpenOffice. 12 

ST R UC T UR E DDAT AHA N D L E R .H S  

 

 

 

 

 

 

 

Transpose before creating the 

map this time.  

return is just a function that 

returns its argument + the state. 

module StructuredDataHandler where  

 

import Data.List (foldl’) 

import qualified Data.ByteString.Lazy.Char8 as BStr 

import qualified Data.Map as Map 

Read tab delimited file and treat each column as a separate data list 

readTabDelimitedFileAndTranspose name = do  

    sheet <- (transpose . map (BStr.split ‘\t’)) .  

               BStr.lines `fmap` BStr.readFile name 

    return $ foldl’ go Map.empty sheet 

  where go m (x:xs) = Map.insert (BStr.unpack x) xs m 

                                                                            
12 Rendered using the example 
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SP A R K L I NE .H S  

 

Import Cairo 

Import our stats function 

 

 

 

 

 

 

 

Save Cairo’s state 

Only mx & mn are calculated.   

Y = nearest pixel prop. to the 

data range.  X=every 2 pixels.  

Make (x,y) pairs 

Set the pen to black 

Place the pen 

For all pts, draw a line from the 

prev.to the next.  Stroke draws it 

to the page. Restore the state 

module Sparkline where 

import Graphics.Rendering.Cairo 

import Stats  

Remap values from one range (mn-mx) to another. (mn’-mx’) 

clamp :: Double -> Double -> Double -> Double -> Double 

      -> Double 

clamp mx mn mx’ mn’ x =  

  (x-mn) / (mx-mn) * (mx’-mn’) + mn’ 

 

renderSparkline values width height = do 

  save 

  let (mx,mn,_,_,_,_) = stats values 

      yvals = map (clamp mx mn 0 height) values 

      xvals = iterate (+width) 0 

      (init:coords) = zip xvals yvals 

  setSourceRGB 0 0 0 

  moveto (fst init) (snd init) 

  mapM_ (uncurry lineto) coords 

  stroke 

  restore 

 

 

MA I N .H S  

Import Cairo 

Import our data handler 

Import the sparkline renderer 

Import sys.argv 

Import Map’s lookup operator 

 ByteString’s string conversion. 

 

 

Bind args to variables, ignore rest 

Read datafile 

Read data column into Floats 

2 pixels for each value 

Convert commandline height and 

width to integer. 

 

Allocate a rendering surface 

 

Render a sparkline 

 

 

 

Write to the output file. 

import Graphics.Rendering.Cairo  

import StructuredDataHandler 

import Sparkline 

import System.Environment (getArgs) 

import Data.Map (!) 

import Data.ByteString.Lazy.Char8 (unpack) 

 

main = do 

  [filename,column,ofilename,sWPV,sHeight] <- getArgs 

  theData <- readTabDelimitedFileAndTranspose filename 

  let values = map (read . unpack) $ theData ! column 

      wpv = read sWPV 

      width = wpv * length values 

      height = read sHeight 

 

  withImageSurface  

    FormatARGB32 width height $ \surf -> do  

      renderWith surf  

                 (renderSparkline values  

                             (fromIntegral wpv) 

                             (fromIntegral height)) 

      surfaceWriteToPNG surf ofilename       
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O P E N G L  E X A M P L E  :  3 D  S C A T T E R P L O T S  

Scatterplots are an excellent way to display large 
amounts of data.  3D scatterplots can be flown 
through, and can contain more than just three 
dimensions of data: individual points can be 
different sizes, and different colors.  We want our 
scatterplot to be able to handle large amounts of 
data, and be interactive, so that we can turn the plot 
around.  This is a good simple program that you can 
do a lot to after you’re done with it.  You could 
change coordinate systems and spaces.  You could 
change it from using display lists to using vertex and 
color arrays to accommodate even more data.  
Scatterplots are wonderful, versatile things.   

 

 

ST R UC T UR E DDAT AHA N L D E R .H S  

 

 

 

 

 

 

Read In a row major formatted 

dataset with names in the first 

row. 

 

 

module StructuredDataHandler where  

 

import Data.List (foldl’,transpose) 

import qualified Data.ByteString.Lazy.Char8 as BStr 

import qualified Data.Map as Map 

 

readTabDelimitedFileAndTranspose = do  

    sheet <- (transpose . map (BStr.splot ‘\t’)) .  

               BStr.lines `fmap` BStr.readFile name 

    return $ foldl’ go Map.empty sheet 

  where go m (x:xs) = Map.insert (BStr.unpack x) xs m 

 

 

PR O G R AMST A T E .H S  

 

 

 

 

 

 

 

 

 

 

The statistics from our stats fn 

 

OpenGL Vertices for the data 

The names of the axes 

The angle of the camera 

Render function. 

 

module ProgramState where 

 

import qualified Graphics.Rendering.OpenGL.GL as GL 

import qualified Graphics.Rendering.OpenGL.GLU as GL 

import qualified Graphics.UI.GLUT as GLUT 

import Graphics.Rendering.OpenGL.GL (($=)) 

import Data.IORef 

import Data.Map (Map,(!)) 

 

data ProgramState = ProgramState {  

    plotstats :: Map String  

      (Float,Float,Float,Float,Float,Float) 

  , datapoints :: [GL.Vertex3 Float] 

  , axes :: (String,String,String) 

  , camerarotation :: (Float,Float,Float) 

  , renderer :: IORef ProgramState -> IO () 

  }  
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Event handler for up, down, left, 

right buttons as well as – and = 

for zoom in and out. 

Handle up rotation. 

Read state 

Get the current camera rotation. 

Adjust the x rotation 10 degrees. 

Render. 

 

Handle down rotation 

 

 

Adjust x by -10 degrees 

 

 

Handle right rotation 

 

 

Adjust y by 10 degrees 

 

 

Handle Left rotation 

 

 

Adjust y by -10 degrees 

 

 

keyboardMouseCallback :: IORef ProgramState ->  

  GLUT.KeyboardMouseCallback 

keyboardMouseCallback  

  state (GLUT.SpecialKey GLUT.KeyUp) GLUT.Down _ _ = do 

    st <- readIORef state 

    let (x,y,z) = camerarotation st 

    state `writeIORef` st{ camerarotation = (x+3,y,z) } 

    renderer st $ state   

keyboardMouseCallback  

  state (GLUT.SpecialKey GLUT.KeyDown) GLUT.Down _ _ = do 

    st <- readIORef state 

    let (x,y,z) = camerarotation st 

    state `writeIORef` st{ camerarotation = (x-3,y,z) } 

    renderer st $ state  

keyboardMouseCallback  

  state (GLUT.SpecialKey GLUT.KeyRight) GLUT.Down _ _= do 

    st <- readIORef state 

    let (x,y,z) = camerarotation st 

    state `writeIORef` st{ camerarotation = (x,y+3,z) } 

    renderer st $ state       

keyboardMouseCallback  

  state (GLUT.SpecialKey GLUT.KeyLeft) GLUT.Down _ _ = do  

    st <- readIORef state 

    let (x,y,z) = camerarotation st 

    state `writeIORef` st{ camerarotation = (x,y-3,z) } 

    renderer st $ state    

keyboardMouseCallback _ _ _ _ _ = return () 

 

MA I N .H S  

 

 

 

 

 

 

 

 

 

 

X rotation vector for GL.rotate 

Y rotation vector for GL.rotate 

 

White 

Black 

 

 

import qualified Graphics.Rendering.OpenGL as GL 

import qualified Graphics.UI.GLUT as GLUT 

import Data.Map ((!),fromList) 

import Graphics.Rendering.OpenGL.GL (($=)) 

import ProgramState 

import StructuredDataHandler 

import Data.IORef 

import Stats 

import Data.ByteString.Lazy.Char8 (unpack) 

 

rotx = GL.Vector3 1 0 0 :: GL.Vector3 Float 

roty = GL.Vector3 0 1 0 :: GL.Vector3 Float 

 

white = GL.Color4 1 1 1 1 :: GL.Color4 GL.GLclampf 

black = GL.Color4 0 0 0 1 :: GL.Color4 GL.GLclampf 

 

render state = do 

  st@(ProgramState plotstats 

                   datapoints  

                   (xaxis,yaxis,zaxis)  

                   (xdeg,ydeg,zdeg)  

                   displaylist _) <- readIORef state 
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Set the clear color 

Enable blending and smoothing 

Almost always use this -> 

Smooth lines 

Smooth points 

Do sane things with overlaps 

Clear the buffer 

Set up the projection matrix 

 

 

We want an orthographic 

projection 

Setup the modelview matrix 

 

Center the plot around the origin 

 

Rotate the plot for the camera 

 

 

Set the drawing color 

Make our points visible 

Make our lines thin 

Render the datapoints 

 

Render origin lines for the 1st 

quadrant. 

 

 

 

 

 

Flush OpenGL calls 

Show our drawing on the screen. 

 

Define function to take three 

equal-length lists and make 

vertices. 

 

  GL.clearColor $= white 

  GL.blend $= GL.Enabled 

  GL.blendFunc $= (GL.SrcAlpha, GL.OneMinusSrcAlpha) 

  GL.lineSmooth $= GL.Enabled 

  GL.pointSmooth $= GL.Enabled 

  GL.depthFunc $= Just GL.Less 

  GL.clear [GL.ColorBuffer, GL.DepthBuffer] 

  GL.matrixMode $= GL.Projection 

  GL.loadIdentity 

   

  GL.ortho (-1.2) 1.2 (-1.2) 1.2 (-1.2) 1.2 

    

  GL.matrixMode $= GL.Modelview 0 

  GL.loadIdentity 

  GL.translate (GL.Vector3 (-0.5) (-0.5) (-0.5) ::  

                  GL.Vector3 Float) 

  GL.rotate xdeg rotx 

  GL.rotate ydeg roty 

 

  GL.color black 

  GL.pointSize $= 3 

  GL.lineWidth $= 1 

  GL.renderPrimitive GL.Points $ mapM_  

    GL.vertex datapoints     

  GL.renderPrimitive GL.Lines $ do  

    GL.vertex (GL.Vertex3 0 0 0 :: GL.Vertex3 Float) 

    GL.vertex (GL.Vertex3 1 0 0 :: GL.Vertex3 Float) 

    GL.vertex (GL.Vertex3 0 0 0 :: GL.Vertex3 Float) 

    GL.vertex (GL.Vertex3 0 1 0 :: GL.Vertex3 Float) 

    GL.vertex (GL.Vertex3 0 0 1 :: GL.Vertex3 Float) 

    GL.vertex (GL.Vertex3 0 0 0 :: GL.Vertex3 Float) 

  GL.flush 

  GLUT.swapBuffers 

 

vertices :: [Float] -> [Float] -> [Float]  

         -> [GL.Vertex3 Float] 

vertices (x:xs) (y:ys) (z:zs) =  

  GL.Vertex3 x y z : vertices xs ys zs 

Handle unequal lengths vertices [] _ _ = [] 

… vertices _ [] _ = [] 

… vertices _ _ [] = [] 

  

Clamp values in [0,1] clamp mn mx v = (v-mn) / (mx-mn)  

  

Program starts executing here. main = do 

Set display mode to something   GLUT.initialDisplayMode $= [GLUT.RGBAMode 

standard.                              ,GLUT.Multisampling 

                              ,GLUT.DoubleBuffered 

                              ,GLUT.WithAlphaComponent] 

Set the default window size.   GLUT.initialWindowSize $= GL.Size 1000 1000 

   (progname, args) <- GLUT.getArgsAndInitialize 
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  let filename = args !! 0 

  

dFileAndTranspose filename 

let points = vertices (map (clamp mnx mxx) xdata)  

 

axis,zaxis) 

UT.createWindow "3D scatterplot"  

tate) 

      xaxis = args !! 1 

      yaxis = args !! 2 

      zaxis = args !! 3     

      rotate = (0,0,0) 

  dat <- readTabDelimite

 

  

                        (map (clamp mny mxy) ydata)  

                        (map (clamp mnz mxz) zdata)  

      xdata = map (read . unpack) $ dat ! xaxis 

      ydata = map (read . unpack) $ dat ! yaxis 

      zdata = map (read . unpack) $ dat ! zaxis 

      xstats@(mxx,mnx,_,_,_,_) = stats xdata 

      ystats@(mxy,mny,_,_,_,_) = stats ydata 

      zstats@(mxz,mnz,_,_,_,_) = stats zdata 

      plstats = fromList [(xaxis,xstats) 

                         ,(yaxis,ystats) 

                         ,(zaxis,zstats)] 

  state <- newIORef $ ProgramState  

    plstats 

    points 

    (xaxis,y

    rotate 

    render 

   

  GL

  GLUT.displayCallback $= render state 

  GLUT.keyboardMouseCallback $=  

     Just (keyboardMouseCallback s

  GLUT.mainLoop   

  

 

  

Read a tab delimited file 

Column name for x axis 

Column name for y axis 

Column name for z axis 

Initial rotation is 0 

Read the datafile 

 

Make vertices from the data 

within [0,1] on all axes. 

 

Get the x data from the map 

Get the y data from the map 

Get the z data from the map 

Calculate X axis stats 

Calculate Y axis stats 

Calculate Z axis stats 

Create map of stats 

 

 

Setup the program state 

 

 

 

 

 

 

Create a window 

Set the display callback 

Set the event handler 

 

Go. 
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A N  O P E N G L  V I S U A L I Z A T I O N  B O I L E R P L A T E  

MA I N .H S  

import qualified Graphics.Rendering.OpenGL.GL as GL 

import qualified Graphics.Rendering.OpenGL.GLU as GL 

import qualified Graphics.UI.GLUT as GLUT 

import Graphics.Rendering.OpenGL.GL ($=) 

import ProgramState 

import StructuredDataHandler 

import Data.IORef 

 

render state = do 

Read program state 

  ProgramState … mouseposn <- readIORef state 

Set up state variables 

  GL.clearColor $= GL.Color4 0 0 0 1 :: GL.Color4 Float 

  GL.blend $= GL.Enabled 

  GL.lineSmooth $= GL.Enabled 

  GL.pointSmooth $= GL.Enabled 

  GL.polygonSmooth $= GL.Enabled 

Clear screen 

  GL.clear [GL.ColorBuffer, GL.DepthBuffer] 

Set up matrix 

  GL.matrixMode $= GL.Projection 

  GL.loadIdentity 

 

Find out the window size.  The @ sign binds the whole pattern to vport, while the individual pieces bind to x, y, xres, and yres 

  vport@(GL.Position x y, GL.Size xres yres) <- GL.get GL.viewport 

 

If render has been called to determine mouse selection, render only under the mouse 

  mode <- GL.get GL.renderMode   

  if rendermode == GL.Select 

    then let Just (GL.Position mx my) = mouseposn 

             pickx = fromIntegral mx 

             picky = fromIntegral my + fromIntegral y 

             area = (2,2) in 

               GL.pickMatrix pickx picky area vport 

    else return () 

 

Set up GL coordinates = window coordinates 

  GL.ortho2d 0 0 (fromIntegral xres) (fromIntegral yres) 

 

Set up the modelview matrix 

  GL.matrixMode $= GL.ModelView 0 

  GL.loadIdentity 

 

Check again to see if we’re using render mode or select mod 

  if mode == GL.render then do 

… render stuff as if it will be displayed 

  else do 

… render only stuff that is selectable  

  GL.flush 

  GLUT.swapBuffers 
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main = do 

  (progname, args) <- GLUT.getArgsAndInit 

  GL.Size xres yres <- GL.get GLUT.screenSize 

  GLUT.createWindow “WindowName” 1000 1000 

Set up the program state below, followed by the display and event handler callbacks.  Before this, read in and create your data structure. 

  state <- newIORef $ ProgramState … 

  GLUT.displayCallback $= render state 

  GLUT.keyboardMouseCallback $= Just (keyboardMouseCallback state) 

  GLUT.mainLoop   

 

 

PR O G R AMSTAT E .H S  

Module name must be the same as the filename. 

module ProgramState where 

 

import qualified Graphics.Rendering.OpenGL.GL as GL 

import qualified Graphics.Rendering.OpenGL.GLU as GL 

import qualified Graphics.UI.GLUT as GLUT 

import Graphics.Rendering.OpenGL.GL ($=) 

import Data.IORef 

Create program state record type 

data ProgramState = ProgramState {  

  … 

  , renderer :: IO () 

  }  

Create keyboard/mouse motion callback 

keyboardMouseCallback :: IORef ProgramState -> GLUT.KeyboardMouseCallback 

Handle keyboard chars 

keyboardMouseCallback state (GLUT.Char c) GLUT.Down  

                      (GLUT.Modifiers shift ctrl alt) (GL.Position x y) =do 

  st <- readIORef state 

  … do stuff 

  state `writeIORef` st{ … state changes … } 

  renderer st $ state 

  Handle left click 

keyboardMouseCallback state (GLUT.MouseButton GLUT.LeftButton) GLUT.Down 

                      (GLUT.Modifiers shift ctrl alt) (GL.Position x y) =do 

  st <- readIORef state 

  … do stuff 

  state `writeIORef` st{ … state changes … } 

  renderer st $ state 

Handle right click 

keyboardMouseCallback state (GLUT.MouseButton GLUT.RightButton) GLUT.Down 

                      (GLUT.Modifiers shift ctrl alt) (GL.Position x y) =do 

  st <- readIORef state 

  … do stuff 

  state `writeIORef` st{ … state changes … } 

  renderer st $ state 

Default do-nothing case. 

keyboardMouseCallback _ _ _ _ _ = return () 
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S TRUC T URE DDAT AHA N DLE R .H S  

module StructuredDataHandler where  

 

import Data.List (foldl’) 

import qualified Data.ByteString.Lazy.Char8 as BStr 

import qualified Data.Map as Map 

 

Red in a column-major formatted dataset with names in the first column 

readTabDelimitedFile name = do 

    sheet <- (map (BStr.split ‘\t’) . BStr.lines) `fmap` 

             BStr.readFile name 

    return $ foldl’ go Map.empty sheet 

  where go m (x:xs) = Map.insert (BStr.unpack x) xs m 

 

Read in a row-major format dataset with names in the first row 

readTabDelimitedFileAndTranspose = do  

    sheet <- (transpose . map (BStr.splot ‘\t’) . BStr.lines `fmap` 

             BStr.readFile name 

    return $ foldl’ go Map.empty sheet 

  where go m (x:xs) = Map.insert (BStr.unpack x) xs m 

 

Create some data structures for your data here. 

data DataStructure = … 

 

Some single entrypoint for taking the map of names to data lists and making the data structure you just defined. 

buildDatastructure :: Map String [BStr.ByteString] -> DataStructure 

buildDatastructure = … 

 

Convenience function for reading the data structure from file. 

readDatastructureFromFile filename = do  

  dat <- readTabDelimitedFile filename 

  return . buildDatastructure $ dat 
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A  C A I R O  V I S U A L I Z A T I O N  B O I L E R P L A T E  

STRUC T URE DDAT AHA N DLE R .H S  

module StructuredDataHandler where  

 

import Data.List (foldl’) 

import qualified Data.ByteString.Lazy.Char8 as BStr 

import qualified Data.Map as Map 

Read tab delimited file and treat each column as a separate data list 

readTabDelimitedFileAndTranspose name = do  

    sheet <- (transpose . map (BStr.splot ‘\t’) .  

               BStr.lines `fmap` BStr.readFile name 

    return $ foldl’ go Map.empty sheet 

  where go m (x:xs) = Map.insert (BStr.unpack x) xs m 

 

 

 
GE O ME T R Y .H S  

module Geometry where 

import Graphics.Rendering.Cairo 

import Stats  

 

render = do 

  save 

  setSourceRGBA 0 0 0 1 

  moveto 0 0  

  …  

  stroke 

  restore 

 

 

 

MA I N .H S  

import Graphics.Rendering.Cairo  

import StructuredDataHandler 

import Geometry 

import System.Environment (getArgs) 

import Data.Map (!) 

import Data.ByteString.Lazy.Char8 (unpack) 

 

main = do 

  [filename,ofilename~] <- getArgs 

  theData <- readTabDelimitedFileAndTranspose filename 

 

  withImageSurface  

    FormatARGB32 1000 1000 $ \surf -> do  

      renderWith surf render       

      surfaceWriteToPNG surf ofilename       
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