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Abstract

ORCA is an extensible platform for building infrastructure servers based on a foundational leasing
abstraction. These servers include Aggregate Managers for diverse resource providers and stateful
controllers for dynamic slices. ORCA also defines a brokering architecture and control framework to link
these servers together into a federated multi-domain deployment. This chapter reviews the architectural
principles of ORCA and outlines how they enabled and influenced the design of the ExoGENI Racks
deployment, which is built on the ORCA platform. It also sets ORCA in context with the GENI
architecture as it has evolved.

1 Introduction

The Open Resource Control Architecture (ORCA) is a development platform and control framework for
federated infrastructure services. ORCA has been used to build elements of GENI, most notably the
ExoGENI deployment [3]. In ExoGENI the ORCA software mediates between GENI user tools and the
various infrastructure services (IaaS) that run a collection of OpenFlow-enabled cloud sites with dynamic
layer-2 (L2) circuit connectivity.

ORCA is based on the SHARP resource peering architecture [10], which was conceived in 2002 for federation
in PlanetLab and related systems [4] as they emerged. ORCA incorporates the Shirako resource leasing
toolkit [15] and its plug-in extension APIs. This research was driven by a vision similar to GENI: a network
of federated resource providers enabling users and experimenters to build custom slices that combine diverse
resources for computing, networking, and storage.

When construction of GENI began in 2008, ORCA was selected as a candidate control framework along
with three established network testbeds: PlanetLab, Emulab, and ORBIT. ORCA was the only candidate
framework that had been conceived and designed from the ground up as a platform for secure federation,
rather than to support a centrally operated testbed. At that time ORCA was research software with no
production deployment, and so it was more speculative than the other control framework candidates. We had
used it for early experiments with elastic cloud computing [15, 17, 20, 5, 16], but we were just beginning to
apply it to network resources [6, 1].

The GENI project was therefore an opportunity to test whether we had gotten ORCA’s architecture and
abstractions right, by using it to build and deploy a multi-domain networked IaaS system. The crucial test
was to show that ORCA could support advanced network services, beginning with RENCI’s multi-layer
network testbed (the Breakable Experimental Network—BEN) in the Research Triangle region.

During the GENI development phase (2008-2012), participants in the GENI Cluster D group, led by RENCI,
built software to control various infrastructures and link them into a federated system under the ORCA
control framework. For example, the Kansei group built KanseiGenie [18], an ORCA-enabled wireless testbed.
The RENCI team built various software elements later used in ExoGENI. They include a control system
and circuit API for the BEN network; modules to link ORCA with off-the-shelf cloud managers; storage
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Figure 1: Structure of an ORCA aggregate. An Aggregate Manager (AM) issues sliver leases (§2.1, §2.3)
to clients called Slice Managers (SMs). The AMs are built from a generic leasing server core in the ORCA
platform (light shade). The core invokes plug-in extension modules (dark shade) for resource-specific functions
of each aggregate (§2.2). These extensions may invoke standard APIs of off-the-shelf IaaS resource managers,
e.g., OpenStack. Their resource control functions are driven by logical descriptions of the managed resources
(§2.4). ExoGENI uses this structure for diverse aggregates, including network providers (§2.5).

provisioning using commercial network storage appliances; VLAN-sliced access control for OpenFlow-enabled
network dataplanes; adapters for various third-party services; and a front-end control interface that tracked
the GENI API standards as they emerged.

Through this phase ORCA served as a common framework to organize these efforts and link them together.
This was possible because ORCA was designed as an orchestration platform for diverse resource managers at
the back end and customizable access methods at the front end, rather than as a standalone testbed itself.

ORCA was based on the premise that much of the code for controlling resources in a system like GENI would
be independent of the specific resources, control policies, and access methods. The first step was to write the
common code once as a generic toolkit, keeping it free of assumptions about the specific resources and policies.
The second step was to plug in software adapters to connect the toolkit to separately developed IaaS resource
managers, which were advancing rapidly outside of the GENI effort. Finally, we used a powerful logic-based
resource description language (NDL-OWL) to represent resources and configurations declaratively [2, 1].
Descriptions in the language drive policies and algorithms to co-schedule compute and network resources and
interconnect them according to their properties and dependencies.

This approach enabled us to demonstrate key objectives of GENI—automated embedding and end-to-end
assembly (stitching) of L2 virtual network topologies spanning multiple providers—by early 2010, well before
GENI had defined protocols to enable these functions. ORCA already defined a protocol and federation
structure similar to what was ultimately adopted in GENI; we essentially just used that structure to link
together third-party back-end resource managers as they appeared, and control them through their existing
APIs. This philosophy carried through to the ExoGENI effort when it was funded in 2012: the exo prefix
refers in part to the idea of incorporating resources and software from outside of GENI and exposing their
power through GENI APIs.

The remainder of this chapter outlines the ORCA system in more detail, illustrating with examples from
ExoGENI. §2 gives an overview of ORCA’s abstractions and extension mechanisms, and the role of logic-based
resource descriptions. §3 summarizes ORCA’s structure for orchestrating providers based on broker and
controller services. §4 sets ORCA in context with the GENI architecture as it has evolved.

2 Overview of the ORCA Platform

ORCA and GENI embody the key concepts of slices, slivers, and aggregates derived from their common
heritage in PlanetLab. An aggregate is a resource provider: to a client, it appears as a hosting site or
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domain that can allocate and provision resources such as machines, networks, and storage volumes. An
Aggregate Manager (AM) is a service that implements the aggregate’s resource provider API. A sliver is any
virtual resource instance that is provisioned from a single AM and is named and managed independently
of other slivers. Slivers have a lifecycle and operational states, which a requester may query or transition
(e.g., shutdown, restart). A slice is a logical container for a set of slivers that are used for some common
purpose. Each sliver is a member of exactly one slice, which exists at the time the sliver is created and never
changes through the life of the sliver.

Client tools call the AMs to allocate and control slivers across multiple aggregates, and link them to form
end-to-end environments (slices) for experiments or applications. In ORCA we refer to a client of the AM
interface as a Slice Manager (SM, see §3). Each request from an SM to an AM operates on one or more
slivers of exactly one slice. The slices are built to order with suitable end-to-end connectivity according to
the needs of each experiment. The slice abstraction serves as a basis for organizing user activity: loosely, a
slice is a unit of activity that can be enabled, disabled, authorized, accounted, and/or contained.

Figure 1 illustrates an ORCA aggregate and the elements involved in issuing a sliver lease to a client SM.
ORCA bases all resource management on the abstraction of resource leases (§2.1). The core leasing engine is
generic: ORCA factors support for specific resources and policies into replaceable extension modules that
plug into the core (§2.2). The extensions produce and/or consume declarative descriptions that represent
information needed to manage the resources (§2.4). The common leasing abstractions and plug-in APIs
facilitate implementation of AMs for diverse resources (§2.5).

2.1 Resource Leases

Resource leases are explicit representations of resource commitments granted or obtained through time. The
lease abstraction is a powerful basis for negotiating and arbitrating control over shared networked resources.
GENI ultimately adopted an equivalent leasing model in the version 3.0 API in 2012.

A lease is a promise from an aggregate to provide one or more slivers for a slice over an interval of time (the
term). Each sliver is in the scope of exactly one lease. A lease is materalized as a machine-readable document
specifying the slice, sliver(s), and term. Each lease references a logical description (§2.4) of the slivers and
the nature of the access that is promised. Leases are authenticated: ORCA leases are signed by the issuing
AM. Lease contracts may be renewed (extended) or vacated prior to expiration, by mutual agreement of the
slice owner and AM. If an SM abandons a sliver, e.g., due to a failure, then the resources are freed when the
lease expires.

SHARP introduced a two-step leasing API in which the client first obtains an approval to allocate the
resources (a ticket), and then redeems the ticket to claim the resources and provision (instantiate) the slivers.
A ticket is a weaker promise than a lease: it specifies the promised resources abstractly. The AM assigns
(binds) concrete resources to fill the ticket only when it is redeemed. In ORCA the tickets may be issued by
brokers outside of the aggregates (§3.2).

By separating allocation and provisioning in this way, the leasing API enables a client to obtain promises
for resources at multiple AMs cheaply, and then move to the redeem step only if it succeeds in collecting a
resource bundle (a set of tickets) matching its needs. The two-step API is a building block for grouped leases
and atomic co-allocation—the ability to request a set of slivers such that either the entire request succeeds or
it aborts and no sliver is provisioned. The AM may commit resources cheaply in advance, and then consider
current conditions in determining how to provision the resources if and when they are needed.

From the perspective of the AMs, leases provide a means to control the terms under which their resources are
used. The resource promises may take a number of forms expressible in the logic, ranging along a continuum
of assurances ranging from a hard physical (e.g., bare metal) reservation to a weak promise of best-effort
service over the term. By placing a time bound on the commitments, leases enable AMs to make other
promises for the same resources in the future (advance reservations).

From the perspective of the SMs, leases make all resource allotments explicit and visible, enabling them to
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Figure 2: Lease states and transitions. Interacting state machines representing a single ORCA lease at
three servers: the SM that requested the resource, the broker that issued the ticket, and the provider (AM)
that sets up the slivers, issues the lease, and tears down the resource when the lease expires. Each state
machine passes through various intermediate states, triggering policy actions, local provisioning actions, and
application launch. This figure is adapted from [15].

reason about their assurances and the expected performance of the slice. Since the SM may lease slivers
independently, it can modify the slice by adding new slivers and/or releasing old slivers, enabling elastic
slices that grow or shrink according to need and/or resource availability. Various research uses of the ORCA
software experimented with elastic slice controllers (§3.3), building on our early work in adaptive resource
management for hosting centers [8, 9].

2.2 Extension Modules

ORCA is based on a generic reusable leasing engine with dependencies factored into stackable plug-in extension
modules [15]. The core engine tracks lease objects through time in calendar structures that are accessible
to the extensions. For example, an AM combines the leasing engine with two types of extensions that are
specific to the resources in the aggregate:

• ResourceControl. The AM core upcalls a ResourceControl policy module periodically with batches
of recently received sliver requests. Its purpose is to assign the requests onto the available resources.
The batching interval is a configurable parameter. It may defer or reject each request, or approve it
with an optional binding to a resource set selected from a pool of matching resources. The module may
query the attributes of the requester, the state of the resources and calendar, other pending requests,
and the history of the request stream.

• Handler. The AM core upcalls a Handler module to setup a sliver after approval, or teardown a sliver
after a lease is closed (expired, cancelled, or vacated). Resource handlers perform any configuration
actions needed to implement slivers on the back-end infrastructure. The handler API includes a probe

method to poll the current status of a sliver, and a modify method to adjust its properties.

An ORCA AM may serve multiple types of slivers by combining multiple instances of these modules, which
are indexed and selectable by sliver type. Each upcall runs on its own thread and is permitted to block, e.g.,
for configuration actions in the handler, which may take seconds or minutes to complete. The extensions post
their results asynchronously through lease objects that are shared with the leasing core.

4



ra=(8,4) 

rb=(4,8) 

a 

b 

c 
rc=(4,4) 

→"

→"

→"16 

rA=(8,4) 

rB=(4,8) 

A 

B 

f  =(4,4) 

→"

→"

→"

b 

c 
rc=(4,4) 

rA=(8,4) 

A 

→"

f =(8,12) 
→"

rB=(4,8) 

B 

f =(12,4) 

→"

→"
f =(16,16) 
→"

free 
resource 

sliver A term  

calendar slots 

sliver B term  resource pool status 

Figure 3: A simple example of resource algebra and sliver allocation. These slivers represent a virtual resource
with two dimensions, e.g., virtual machines with specified quantities of memory and CPU power. They are
allocated and released from a pool of bounded capacity. Free capacity in the pool is given by vector addition
and subtraction as slivers are allocated and released.

2.3 Leasing Engine

The ORCA platform views each lease as a set of interacting state machines on the servers that are aware of
it. The lease state machines have well-defined states and state transition rules specific to each type of server.
Figure 2 illustrates typical states, transitions, and actions.

The core engine within each server serializes state machine transitions and commits them to stable storage.
After a transition commits, it may trigger asynchronous actions including notifications to other servers,
upcalls to extension modules, and various other maintenance activities.

Lease state transitions and their actions are driven by the passage of time (e.g., sliver setup at the start of
the term and teardown at the end of the term), changes in status of the underlying resources (e.g., failure),
decisions by policy modules, and various API calls.

Cross-server interactions in the leasing system are asyncronous and resilient. After a failure or server restart,
the core recovers lease objects and restarts pending actions. The extensions may store data blobs and property
lists on the lease objects. The core upcalls each extension with the recovered lease objects before restarting
any actions. The servers and extensions are responsible for suppressing any effects from duplicate actions
that completed before a failure but were restarted or reissued on recovery.

2.4 Resource Descriptions

The ORCA platform makes it possible to build new AMs quickly by implementing the Handler and
ResourceControl modules. Since the leasing core and protocols are generic, there must be some means to
represent resource-specific information needed by these modules. This is achieved with a data-centric API in
which simple API requests and responses (ticket/redeem/renew/close) have attached descriptions that
carry this content. The descriptions contain statements in a declarative language that describe the resources
and their attributes and relationships.

The description language must be sufficiently powerful to describe the resource service that the aggregate
provides: what kinds of slivers, sizes and other options, constraints on the capacity of its resource pools,
and interconnection capabilities for slivers from those pools. It must also be able to describe resources at
multiple levels of abstraction and detail. In particular, clients describe their sliver requests abstractly, while
the aggregate’s descriptions of the provisioned slivers are more concrete and detailed. GENI refers to these
cases as advertisement, request, and manifest respectively.
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In ORCA the descriptions are processed only by the resource-specific parts of the code, i.e., by the extension
modules. The core ignores the descriptions and is agnostic to their language. An ORCA resource description
is a set of arbitrary strings, each indexed by a key: it is a property list. ORCA defines standard labels for
distinct property lists exchanged in the protocols, corresponding to the advertisement, request, and manifest
cases.

To support meaningful resource controls, the description language must enable a resource algebra of operators
to split and merge sliver sets and resource pools. Given descriptions of a resource pool (an advertisement)
and a set of slivers, a resource algebra can determine if it is feasible to draw the sliver set from the pool, and
if so to generate a new description of the resources remaining in the pool. Another operator determines the
effect of releasing slivers back to a pool.

The original SHARP/Shirako lease manager [15] used in ORCA described pools as quantities of interchangeable
slivers of a given type. A later version added resource controls using an algebra for multi-dimensional slivers
expressed as vectors [12], e.g., virtual machines with rated CPU power, memory size and storage capacity,
and IOPS. Figure 3 depicts a simple example of resource algebra with vectors.

In the GENI project we addressed the challenge of how to represent complex network topologies and sliver
sets that form virtual networks over those topologies. For this purpose we adopted a declarative logic language
for resource descriptions. Logical descriptions expose useful resource properties and relationships for inference
using a generic reasoning engine according to declarative rules. In addition to their expressive power, logical
descriptions have the benefit that it is semantically sound to split and combine them, because they are sets
of independent statements in which all objects have names that are globally unique and stable. For example,
a logical slice description is simply a concatenation of individual sliver descriptions, each of which can be
processed independently of the others. Statements may reference objects outside of the description, e.g., to
represent relationships among objects.

To this end, the RENCI team augmented the Network Description Language [13] with a description logic
ontology in the OWL semantic web language. We called the resulting language NDL-OWL [2]. We used
NDL-OWL to describe infrastructures orchestrated with ORCA: BEN and other networks and their attached
edge resources, including virtual machine services. For example, NDL-OWL enables us to enforce semantic
constraints on resource requests, express path selection and topology embedding as SPARQL queries over
NDL-OWL graph models, check compatibility of candidate interconnections (e.g., for end-to-end VLAN
tag stitching, §3.4), and generate sequences of handler actions to instantiate slivers automatically from the
descriptions. These capabilities are implemented in extension modules with no changes to the ORCA core.

2.5 Building Aggregates with ORCA

We used ORCA and NDL-OWL to build a collection of Aggregate Managers (AMs) for back-end resource
managers from other parties. In ExoGENI, these include two off-the-shelf managers for cloud sites: OpenStack
for Linux/KVM virtual machines and xCAT for bare-metal provisioning. These systems expose local APIs to
allocate and instantiate resources. Each AM runs one or more Handler modules that invoke these back-end
control APIs.

We augmented the cloud aggregates with additional back-end software to function as sites in a networked
IaaS federation under a separate NSF SDCI project beginning in 2010. The added software includes a caching
proxy for VM images retrieved by URL, an OpenFlow access control proxy (FlowVisor) to enable slices to
control their virtual networks, and OpenStack extensions for dynamic attachment of VM instances to external
L2 circuits. We also added handlers to invoke storage provisioning APIs of third-party storage appliances.
These elements are independent of the cloud manager: the AM handlers orchestrate their operation.

In the GENI project, we implemented AMs for network management. Most notably, the control software for
BEN and its circuit service were implemented natively using ORCA in 2009; the AM handlers issue direct
commands to the vendor-defined APIs on the BEN network elements.

Later we implemented AMs to provide dynamic circuit service for a network of cloud sites under ORCA
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Figure 4: Interacting servers in the ORCA resource control plane. The figure shows the sequence of steps
and protocol messages to provision a sliver, passing through policy modules in each server. This figure is
adapted from [12].

control. The circuit AMs proxy third-party L2 circuit services from national-footprint backbone providers,
including NLR’s now-defunct Sherpa service and the OSCARS services offered by ESNet and Internet2. For
these systems the AM handler calls the circuit API under its own identity; the circuit provider does not know
the identities of the GENI users on their networks. In effect, the provider implicitly delegates to the AM the
responsibility to authorize user access, maintain user contacts and billing if applicable, and provide a kill
switch. This approach was easy to implement without changing the circuit providers: to the provider the AM
is indistinguishable from any other client.

Finally, for ExoGENI we implemented an AM to control exchange points—RENCI-owned switches installed
at peering centers where multiple transit providers come together (e.g., Starlight). These switches implement
VLAN tag translation; the exchange AM uses this capability to stitch circuits from different providers into a
logical end-to-end circuit. The handler for the exchange AM issues direct commands to the vendor API on
the switches, similarly to the BEN control software.

3 Orchestration and Cross-Aggregate Resource Control

Section 2 described how we can build diverse aggregates with ORCA by plugging resource-specific and
policy-specific extension modules into a common leasing core, and accessing their resources via common
leasing protocols. This approach can apply to any aggregate whose resources are logically describable. It helps
to deliver on a key goal of GENI: support for diverse virtual resources from multiple providers (aggregates).

But GENI’s vision of a provider federation goes beyond that: it is also necessary to coordinate functions
across aggregates in the federation. ORCA defines two kinds of coordinating servers that are not present in
the GENI architecture: brokers and controllers. The brokers (§3.2) issue tickets for slivers on aggregates:
they facilitate resource discovery and cross-aggregate resource control. The controllers (§3.3) manage slices:
each slice is bound to exactly one controller, which receives notifications for all events in the slice and issues
sliver operations on the slice. In general, ORCA controllers run on behalf of users to manage their slices:
they have no special privilege.

These servers play an important role in ExoGENI. In particular, the ExoGENI controllers manage topology
embedding and slice assembly (§3.4). They also implement the GENI API and proxy requests from GENI
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users for ExoGENI resources (§3.5). Proxying requires them to check authorization for GENI users, so the
ExoGENI AMs are configured to trust these special controllers to perform this function.

3.1 ORCA Resource Control Plane

Brokers and controllers are built using the same leasing platform as the AMs. The ORCA toolkit design
recognized that these servers have key structural elements in common: a dataset of slices and slivers; timer-
driven actions on lease objects organized in a calendar; similar threading and communication models; and
lease state machines with a common structure for plug-in extension modules.

Figure 4 illustrates the three types of interacting servers in the ORCA framework and their policy modules.
The AMs advertise their resource pools to one or more brokers. Controllers run as extension modules within
generic Slice Manager (SM) servers. The SM controllers select and sequence resource requests for the slice to
the brokers and AMs. The brokers run policy modules—similar to the AM ResourceControl extensions—to
allocate slivers and issue tickets against an inventory of advertisements. The AMs provision slivers according
to the tickets and other directives passed with each request. The protocol messages carry resource descriptions
produced and consumed by the policy modules. All messages are signed to ensure a verifiable delegation path.

An ORCA deployment may combine many instances of each kind of server. ORCA was conceived as a resource
control plane in which multiple instances of these servers interact in a deployment that evolves over time.
The ORCA toolkit combines a platform to build these servers and a control framework to link them together.
These linkages (e.g. delegations from AMs to brokers) are driven by configuration files or administrative
commands, or programmatically from an extension module.

Since all agreements are explicit about their terms, this structure creates a foundation for resource management
based on peering, bartering, or economic exchange [10, 14, 11]. An AM may advertise its resources to multiple
brokers, and a broker may issue tickets for multiple AMs. The AM ultimately chooses whether or not to
honor any ticket issued by a broker, and it may hold a broker accountable for any oversubscription of an
AM’s advertisements [10].

3.2 Brokers

Brokers address the need for cross-aggregate resource control. They can arbitrate or schedule access to
resources by multiple users across multiple aggregates, or impose limits on user resource usage across
aggregates using the same broker. The broker policy has access to the attributes of the requester and target
slice, and it may maintain a history of requests to track resource usage by each entity through time.

Brokers also offer basic support for co-allocation across multiple aggregates, including advance reservations.
This support is a key motivation for the two-step ticket/lease protocol in SHARP and ORCA. In particular,
an ORCA broker may receive resource delegations from multiple aggregates and issue co-allocated tickets
against them. Because all allocation state is kept local to the broker, the co-allocation protocol commits
locally at the broker in a single step.

The key elements that enable brokers are the separation of allocation and provisioning (§2.1) and the “resource
algebra” of declarative resource descriptions (§2.4). Given the algebra, the processing for ticket allocation
can migrate outside of the AMs to generic brokers operating from the AM’s logical description. The AM
must trust the broker to perform this function on its delegated resource pools, but it can always validate the
decisions of its brokers because the tickets they issue are redeemed back to the AM for the provisioning step.

The logical resource descriptions enable advertisements at multiple levels of abstraction. In practice, most
AMs advertise service descriptions rather than their internal structure. For example, ExoGENI network AMs
hide their topology details: they advertise only their edge interconnection points with other domains and the
bandwidth available at each point. Abstract advertisements offer more flexibility and autonomy to the AMs,
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who may rearrange their infrastructures or adjust sliver bindings to respond to demands and local conditions
at the time of service.

Each AM chooses how to advertise its resources in order to balance the risks of ticket rejection or underuti-
lization of its resources. For example, an unfortunate side effect of abstract advertisements is that brokers
may issue ticket sets that are not feasible on the actual infrastructure, particularly during periods of high
utilization. Ticket rejection by the AM is undesirable and disruptive, but it is unavoidable in the general
case, e.g., during outages. An AM may hold unadvertised capacity in reserve to mask problems, but this
choice leaves some of its resources unused. Alternatively, an AM may advertise redundantly to multiple
brokers. This choice reduces the risk of wasting resources due to broker failure at the cost of a higher risk of
overcommitment and ticket rejection.

To summarize, the flexible delegation model enables a continuum of deployment choices that balance the local
autonomy of resource providers with the need for global coordination through the brokering system. Resource
contracts and logical descriptions enable AMs to delegate varying degrees of control over their resources to
brokers that implement policies of a community. At one end of the continuum, each AM retains all control
for itself, effectively acting as its own broker, and consumers negotiate resource access with each provider
separately. At the other end of the continuum a set of AMs federate using common policies implemented in a
central brokering service. These are deployment choices, not architectural choices. In ExoGENI all AMs
advertise to a central broker, but each cloud site also serves some resources locally.

3.3 Controllers

The slice controllers in ORCA match the Software-Defined Networking and Infrastructure (SDN/SDI)
paradigm that is popular today. Like SDN controllers they control the structure of a virtual network (a slice)
spanning a set of low-level infrastructure elements. They issue commands to define and evolve the slice, and
receive and respond to asynchronous notifications of events affecting the slice. Like other ORCA servers, the
controller/SM is stateful: it maintains a database recording the status of each slice, including active tickets
and leases and any pending requests. It is the only control element with a global view of the slice.

One simple function of the controller is to automate sliver renewal (“meter feeding”) as leases expire, to avoid
burdening a user. The controller may allow leases to lapse or inject new lease requests acccording to a policy.
In the early work, the controller and SM were conceived as the locus of automated adaptation policy for
elastic slices and elastic services running within those slices [15, 17, 14, 20, 5, 16]. (This is why the SM was
called Service Manager in the early papers.) For example, a 2006 paper [17] describes the deployment of
elastic grid instances over a network of virtual machine providers, orchestrated by a “grid resource oversight
controller” (GROC). The grid instances grow and shrink according to their observed load.

To assist the controller in orchestrating complex slices, the ORCA leasing engine can enforce a specified
sequencing of lease setup actions issued from the SM. The controller registers dependencies by constructing a
DAG across the lease objects, and the core issues the lease actions in a partial order according to the DAG.
This structure was developed for controllers that orchestrate complex hosted services [15], such as the GROC,
but it has also proved useful to automate stitching of network connectivity within slices that span aggregates
linked by L2 circuit networks [2], as described in §3.4 below.

In particular, the leasing engine redeems and instantiates each lease before any of its successors in the DAG.
Suppose an object has been ticketed but no lease has been received for a redeem predecessor: then the engine
transitions the ticketed object into a blocked state, and does not fire the redeem action until the predecessor
lease arrives, indicating that its setup is complete. The core upcalls the controller before transitioning out of
the blocked state. This upcall API allows the controller to manipulate properties on the object before the
action fires. For example, the controller might propagate attributes of the predecessor (such as an IP address
or VLAN tag returned in the lease) to the successor, for use as an argument to a configuration action.
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Figure 5: Dependency DAG and stitching workflow for an end-to-end L2 circuit scenario. NLR/Sherpa
chooses the VLAN tag at both ends of its circuits, BEN has tag translation capability, and the edge cloud
sites can accept tags chosen by the adjacent provider. The connection point descriptions yield a stitching
workflow DAG. The controller traverses the DAG to assemble the circuit with a partial order of steps.

3.4 Automated Stitching and Topology Mapping

ExoGENI illustrates how controllers and their dependency DAGs are useful to plan and orchestrate complex
slices. In particular, the controllers automate end-to-end circuit stitching by building a dependency DAG
based on logical resource descriptions.

The controller first obtains the description for each edge connection point between domains traversed by
links in a slice. The descriptions specify the properties of each connection point. In particular, they describe
whether each domain can produce and/or consume “label” values (e.g., VLAN tags) that name an attachment
of a virtual link to an interface at the connection point. A domain with translation capability can act as
either a label producer or consumer as needed.

Stitching a slice involves making decisions about which domains will produce and which will consume labels,
a process that is constrained by the topology of the slice and the capabilities of the domains. Based on
this information, the controller generates a stitching workflow DAG that encodes the flow of labels and
dependencies among the slivers that it requests from these domains. A producer must produce before a
consumer can consume. The controller traverses the DAG, instantiating resources and propagating labels to
their successors as the labels become available.

Figure 5 illustrates with a hypothetical scenario. The NLR circuit service is a producer: its circuits are
compatible for stitching only to adjacent domains with consumer or tag translation capability. The resulting
DAG instantiates the NLR circuit first, and obtains the tag from the sliver manifest returned by the domain’s
AM. Once the tag is known, the controller propagates it by firing an action on the successor slivers at the
attachment point, passing the tag as a parameter. Each domain signs any labels that it produces, so that
downstream AMs can verify their authenticity. A common broker or other federation authority may function
as a trust anchor. In extreme cases in which VLAN tag negotation is required, e.g. among adjacent “producer”
domains, it is possible to configure the broker policy module to allocate a tag from a common pool of values.

The ExoGENI controllers also handle inter-domain topology mapping (embedding) for complex slices [19].
A controller breaks a requested topology down into a set of paths, and implements a shortest-feasible-path
algorithm to plan each path, considering compatibility of adjacent providers in the candidate paths as
described above. To plan topologies, the controller uses a query interface on the brokers to obtain and cache
the complete advertisements of the candidate network domains. It then performs path computation against
these logical models in order to plan its sliver requests. If a path traverses multiple adjacent producer domains,
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it may be necessary to bridge them by routing the path through an exchange point that can translate the
tags. After the controller determines the inter-domain path, the domains select their own intra-domain paths
internally at sliver instantiation time.

Topology embedding is expensive, so it is convenient to perform it in the SM controllers. The SMs and
controllers are easy to scale because they act on behalf of slices: as the number of slices grows it is easy to
add more SMs and assign new slices to the new SMs.

3.5 GENI Proxy Controller

ExoGENI runs special GENI controllers that offer standard GENI interfaces to GENI users. The GENI
controllers run a converter to translate the GENI request specification (RSpec) into NDL-OWL. The converter
also checks the request for compliance with a set of semantic constraints, which are specified declaratively in
NDL-OWL. If a request is valid, it acts as a proxy to orchestrate fulfillment of the request by issuing ORCA
operations to ExoGENI brokers and AMs. This approach enables suitably authorized GENI users to access
ExoGENI resources and link them into their GENI slices.

ExoGENI’s proxy structure was designed to support GENI standards easily as they emerged, without losing
any significant capability. In particular, a global GENI controller exposes the entire ExoGENI federation as a
single GENI aggregate. This approach enables GENI users to create complete virtual topologies spanning
multiple ExoGENI aggregates, without relying on GENI stitching standards.

4 Reflections on GENI and ORCA

This section offers some thoughts and opinions on the GENI-ORCA experience. We believe that the ORCA
architecture has held up well through the GENI process. We built and deployed ExoGENI as a set of
extension modules with few changes to the ORCA core. Although the ORCA software itself is not used
outside of ExoGENI, the rest of GENI has ultimately adopted similar solutions in all areas of overlap.

In particular, the latest GENI API standard is similar to the ORCA protocol, with per-sliver leases, separate
allocate and provision steps, dynamic stitching, abstract aggregates with no exposed components, elastic
slices with adjustable sliver sets, and a decoupled authorization system. Beyond these commonalities, GENI
omits orchestration features from ORCA that could help meet goals that are still incomplete. It also adopts
policies for user identity and authorization, which are outside the scope of the ORCA architecture.

The remaining differences lie in the data representations carried with the protocol—the languages for resource
descriptions and for the credentials that support a request. In particular, GENI uses a resource description
language (RSpec) that is not logic-based. RSpec may prove to be more human-friendly than NDL-OWL, but
it is decidedly less powerful, and it rests on weaker foundations.

These differences are primarily interoperability issues rather than architectural issues or restrictions of the
protocol itself. The version 3.0 GENI API is open to alternative credential formats including (potentially)
broker-issued tickets, by mutual agreement of the client and server. In principle the protocol is open to
alternative resource description languages as well.

4.1 Platforms vs. Products + Protocols

In retrospect, ORCA’s toolkit orientation set us apart from the GENI project’s initial focus on standardizing
protocols to enable existing network testbeds to interoperate. Many of our colleagues in the project understood
ORCA as another testbed provider, rather than as a platform to federate and orchestrate diverse providers.
They focused on the infrastructure that ORCA supported, which at that time was limited to Xen virtual
machine services [15]. There was less interest in the toolkit itself, in part because ORCA used a different
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language (Java) and tooling than the other GENI clusters. Our focus on the toolkit suggested a rigid
development model and a relaxed approach to protocol standards, which are essential for interoperability.

Even so, the ORCA toolkit accelerated development by using generic ORCA servers to “wrap” existing
back-end systems and call them through their existing APIs. The result looked much like the structure
ultimately adopted in GENI (§4.2), but using the ORCA protocols rather than the GENI standards. The
ORCA experience suggests that the lengthy GENI development phase could have been shortened by focusing
on wrappers and adapters in the early spirals, rather than the protocols.

Moreover, if the wrappers are standardized, then it is possible to change the protocols later by upgrading
the wrappers. We found that it is easier to stabilize the plug-in APIs for the toolkit than the protocols
themselves. For example, ORCA uses an RPC system (Axis SOAP) that has never served us well and is
slated for replacement. The GENI standards use XMLRPC, which is now seen as defunct.

Although it is always difficult to standardize protocols, interoperability in a system like ORCA or GENI is
less about protocols than about data: machine-readable descriptions of the principals and resources. In both
systems the protocols are relatively simple, but the messages carry declarative resource descriptions and
credentials, which may be quite complex. Our standards for these languages will determine the power and
flexibility of the systems that we build (§4.4).

4.2 Federation

The key differences in control framework architectures relate to their approaches to federating the aggregates.
In general, the aggregates themselves are IaaS or PaaS services similar to those being pursued by the larger
research community and in industry. The problem for GENI is to connect them.

The GENI framework takes a simple approach to federation: it provides a common hierarchical name
space (URNs) and central authorities to authorize and monitor user activity. GENI leaves orchestration
to users and their tools and it does not address cross-aggregate resource control (§4.3). Even so, the
GENI community invested substantial time to understand the design alternatives for federation, reconcile
terminologies, and specify a solution. Various architectures were proposed for GENI to factor identity
management and authorization functions out of the standalone testbeds and into federation authorities, but
a workable convergence did not emerge until 2012.

The GENI solution—so far—embodies a design principle also used in ORCA. The AMs do not interact
directly; instead, they merely delegate certain functions for identity management, authorization, and resource
management to common coordinator servers. The coordinators issue signed statements certifying that clients
and their requests comply with federation policy. The AM checks these statements before accepting a request.

For example, the GENI Clearinghouse authorities approve users, authorize slices, and issue credentials binding
attributes to users and slices. User tools pass their credentials to the AMs. These mechanisms provide the
common means for each AM to verify user identity and access rights for the GENI user community. The
coordinators in ORCA/ExoGENI include brokers and the GENI controllers, which are trusted by the AMs to
check the GENI credentials of requests entering the ORCA/ExoGENI enclave.

As originally conceived, ORCA AMs delegate these user authorization functions to the brokers: if a community
broker issues a ticket for a request, the AM accepts the user bearing the ticket. It is the responsibility of the
broker to authorize each user request in its own way before granting a ticket. More precisely, the ORCA
architecture left the model for user identity and authorization unspecified. It is fully compatible with GENI’s
choices in this area, which we contributed to and embrace. However, these choices should remain easily
replaceable in any given deployment (§4.5).
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4.3 Orchestration

GENI has not specified any coordinator functions beyond checking user credentials. In particular, GENI has
not adopted brokers or any form of third-party ticketing to enable cross-aggregate resource management.

Although the sponsor (NSF) has voiced a desire to control user resource usage across multiple aggregates,
GENI has defined no alternative mechanism for this purpose. Importantly, AMs and controllers are not
sufficiently powerful to meet this need without some structure equivalent to brokers. The local policy of any
AM may schedule or limit allocation of its own resources, but it has no knowledge or control over allocations
on other aggregates. Similarly, any limit that an unprivileged controller imposes on resource usage by a slice
is voluntary, because the controller acts as an agent of the slice and its owners.

Slice controllers are also not part of the GENI architecture. GENI was conceived as a set of protocols and
service interfaces: the client software to invoke these interfaces was viewed as out of scope, notwithstanding a
2009 vote in the Tools Working Group. Instead, the idea was that a standard AM API would encourage an
ecosystem of user tools to grow organically from the community. To the extent that computation is needed
to orchestrate cross-aggregate requests for a given slice—such as topology mapping—those functions were
conceived as central services provided to the tools through new service APIs. We believe that it is more
flexible and scalable to provide these functions within the tools. ExoGENI shows that it is possible to do so
given sufficiently powerful resource descriptions and a platform for building the tools.

Over time it became clear that the GENI clients are stateful. In particular, tools must maintain state to
implement timer-driven sliver renewal, multi-step atomic co-allocation, and “tree” stitching across aggregates.
Later in the project, the GENI Project Office developed an extensible tool called omni and a Web portal
to proxy requests from stateless tools into GENI. These clients have steadily incorporated more state and
functionality. It seems likely that they will continue to evolve in the direction of controllers.

The ORCA view is that a federated infrastructure control plane is a “tripod”: all three server types—
aggregate/AM, controller/SM, and broker—are needed for a complete system. The factoring of roles across
these servers is fundamental. The AMs represent the resource providers, and are the only servers with full
visibility and control of their infrastructures. The SMs represent the resource consumers, and are the only
servers with full visibility and control over their slices. The brokers and other authorities (e.g., the GENI
clearinghouse) mediate interactions between the SMs and AMs: they are the only servers that can represent
policy spanning multiple aggregates.

4.4 Description Languages

Our experience with ORCA and GENI deepened our view that the key problems in federated infrastructure
are largely problems of description. This understanding is a significant outcome of the GENI experience.

GENI differs from other infrastructure services primarily in its emphasis on diverse infrastructure, rich
interconnection, and deep programmability. It follows that the central challenges for GENI are in describing
“interesting” resources and in processing those descriptions to manage them.

The early development phase of GENI was marked by an epic debate on dev@geni.net about whether a
common framework for diverse resource providers is even possible. It is perhaps still an open question, but
if the answer is yes, then the path to get there involves automated processing of rich resource descriptions.
To incorporate a new resource service into an existing system, we must first to describe the service and its
resources in a way that enables generic software to reason about the space of possible configurations and
combinations.

For example, the ORCA experience shows that it is easy to incorporate current cloud systems and third-party
transit network providers as GENI aggregates through an adaptation layer if we can describe their resources
logically. Powerful logical descriptions also enable the various coordinator functions (§4.3) in ORCA/ExoGENI.
One lesson of this experience is that AM advertisements do not in general describe the infrastructure substrate,
as the GENI community has understood them, but instead describe infrastructure services, which are even
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more challenging to represent and process. For example, AMs may proxy or “resell” resources from other
providers whose substrate they do not control, or they may offer various mutually exclusive options for virtual
sliver sets within the constraints of a given substrate resource pool.

4.5 Logical Trust

Our ongoing research focuses on declarative representations for trust and authorization, as well as for resources.
The ORCA team at Duke was deeply involved with development of the GENI trust and authorization system
(2010-2013). In recent work we have shown how to specify trust structure and policy alternatives for a GENI
deployment concisely and precisely in SAFE declarative trust logic [7].

The GENI architecture can be built as a set of autonomous services (e.g., the AMs) linked by a declarative
trust structure. The various coordinator roles and trust relationships are captured in declarative policy rules
rather than as procedures or assumptions that are “baked in” to the software.

SAFE is a platform to facilitate this approach to building secure networked systems. Statements in the logic
are embedded in certified credentials generated by the platform. A generic compliance checker validates
credentials according to policy rules, which are also expressed in the logic. A SAFE script wrapper makes it
easy to build and manage credentials using embedded templates, and check received credentials for compliance
with a logical security policy.

It takes about 150 lines of scripted SAFE logic to represent the GENI trust structure, authorization rules,
credential templates, and credential flow. The SAFE approach has potential to accelerate development and
deployment of systems like GENI. It balances low implementation cost with flexibility for deployments to
accommodate diverse policies of their members, evolve their structures and policies over time, and federate
with other deployments.

These are the same goals that motivated the design of ORCA. Note that ORCA and SAFE are complementary.
For example, they may be used together to build GENI.

5 Conclusion

We embarked on the ORCA project more than a decade ago to build a foundation for networked infrastructure
(IaaS) services. Our goal was to pin down a “thin waist” that was simple and deployable, but also sufficiently
flexible and powerful to support basic resource control for a wide range of infrastructures and sharing models.
By resource control we simply mean an ability to manage and dispense resources in measured and metered
quantities according to policies.

Our solution was to develop ORCA. The GENI project brought a welcome opportunity to put ORCA to the
test. There followed a six-year effort to realize the GENI vision and to build and deploy ExoGENI on the
ORCA platform. This chapter summarizes the principles and elements of ORCA and discusses which were
successful in GENI and which were not.
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