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Abstract—Recent advances in cloud technologies and on-
demand network circuits have created an unprecedented op-
portunity to enable complex data-intensive scientific applications
to run on dynamic, networked cloud infrastructure. However,
there is a lack of tools for supporting high-level applications
like scientific workflows on dynamically provisioned, virtualized,
networked IaaS (NIaaS) systems. In this paper, we propose
an architectural framework consisting of application-aware and
application-independent controllers that provision and adapt
complex scientific workflows on NIaaS systems. The application-
independent controller simplifies the use of NIaaS systems by
higher-level applications by closing the gap between applica-
tion abstractions and resource provisioning constructs. We also
present our approach to predicting dynamic resource require-
ments for workflows using an application-aware controller that
proactively evaluates alternative candidate resource allotments
using workflow introspection. We show how these high-level
resource requirements can be automatically transformed to low-
level NIaaS operations to actuate infrastructure adaptation. The
results of our evaluations show that we can make fairly accurate
predictions, and the interplay of prediction and adaptation can
balance performance and utilization for a representative data-
intensive workflow.

I. INTRODUCTION

The advent of pervasive virtualization has heralded an
evolution from static arrangements of resources that persist
over long periods of time to dynamically provisioned systems
such as cloud infrastructure services. In recent years, cloud
Infrastructure-as-a-Service (IaaS) systems have been designed
to offer virtualized infrastructure as a unified hosting substrate
for diverse applications [1], [2], and IaaS solutions have been
deployed in public, private, and institutional clouds. Similarly,
network substrates increasingly offer control interfaces for
dynamic virtualization (e.g., circuits and software-defined net-
working). These advances, coupled with programmable edge
technologies, have created an unprecedented opportunity to en-
able data-intensive scientific applications on elastic networked
cloud infrastructure. We refer to this model as Networked
Infrastructure-as-a-Service (NIaaS).

Networked cloud infrastructures link distributed resources
into connected arrangements, slices, targeted at solving a
specific problem. This slice abstraction is central to providing
mutually isolated pieces of networked virtual infrastructure,
carved out from multiple cloud and network transit providers,
and built to order for guest applications like scientific work-
flows (Figure 1). One such NIaaS system is ExoGENI [3],
which uses the ORCA control framework [4] to create mutu-

ally isolated slices of interconnected virtual infrastructure from
multiple clouds and network providers.

Data-driven workflows are becoming a centerpiece of mod-
ern computational and data-intensive science. One advantage
of NIaaS is that it permits an application’s slice to adapt
elastically to balance performance and cost as the workflow
executes. It opens the possibility to manage the performance
of multiple workflows — and other kinds of applications—that
share a common NIaaS infrastructure with different demands
and priorities. To manage elastic slices, a controller drives
adaptation of each slice as its resource demands and priorities
change, while the NIaaS system arbitrates the requests of
multiple controllers [5], [6], [7], [8]. Many systems have
implemented elastic Web services using controllers [9] that
react to changes in request arrival rate or resource utilization.
Elastic provisioning for IaaS systems is an active research
area [10]. There has been relatively less progress on adaptation
for complex scientific workflows on cloud systems. This paper
addresses that goal.

The resource and request abstractions used in NIaaS sys-
tems are designed for the purpose of infrastructure manage-
ment — resource provisioning, allocation, etc.—but are not
suitable for direct use by higher-level applications. Appli-
cations seldom require full visibility into these operations;
instead they require intermediate abstractions crafted to their
internal models so that their adaptations are guided by the
specific workflow structure. In this paper, we make the case
for a split controller framework combining an application-
independent controller element with an application-aware ele-
ment for proactive introspection into the workflow’s structure
and near-term resource demands. This combination closes the
gap between application abstractions and resource provisioning
constructs by enabling automatic mapping of complex appli-
cations to dynamic infrastructures.

We present a new approach to building application-aware
controllers for computational workflows that are proactive
and take advantage of application-specific knowledge. That
knowledge is supplied as a declarative description of the
workflow structure, together with performance models for the
individual tasks. This approach allows the controller to be
“clairvoyant” with respect to the workflow’s resource needs
as it determines how to adapt the slice. In particular, it can
evaluate the projected performance of the workflow within
alternative candidate resource envelopes as a basis for choices
about how to adapt. Results show that this approach can be
effective in balancing performance, resource utilization and
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cost.

This paper describes an end-to-end system (Figure 2)
that uses the Pegasus [11] workflow management system to
launch workflows on HTCondor [12] environments deployed
on the ExoGENI NIaaS testbed, and includes the application-
aware and application-independent controllers for workflow
introspection and infrastructure adaptation, respectively. The
main contributions of the paper are

• We present our approach to predicting dynamic re-
source needs for workflows using an application-
aware controller, ShadowQ, which proactively eval-
uates alternative candidate resource allotments using
workflow introspection.

• We describe how these high-level resource require-
ments are transformed to low-level NIaaS opera-
tions to instantiate appropriate resource envelopes for
workflows using an application-independent controller
framework, Möbius.

• We present how these two controllers can work to-
gether, as an end-to-end system, to actuate infrastruc-
ture adaptation in response to application needs.

• We present an evaluation of (a) the accuracy of the
predictions, and (b) the interplay of prediction and
adaptation to balance performance and utilization.

II. ARCHITECTURE

Two elements work together to support elastic workflow
adaptation — (a) By leveraging the monitoring capabilities of
Pegasus/HTCondor, the ShadowQ application-aware controller
tracks the current state of the workflow, “introspects” on the
workflow to project the remaining time to completion based
on a workflow model, current workflow state and slice state,
and predicts future resource requirements based on the intro-
spections. (b) A general (application-independent) controller
framework, Möbius, works in concert with ShadowQ: it takes
a description of a desired high-level resource configuration for
the slice, and issues requests to the underlying NIaaS system
to reconfigure and adapt the slice to implement the specified
changes.

A. ShadowQ - Workflow Introspection

The Pegasus workflow management system was extended
by adding a new workflow introspection component called

the ShadowQ. The ShadowQ monitors a running workflow,
makes predictions about future events in the workflow by
running discrete event simulations, and communicates resource
requirements to the Request Manager, a component of Möbius.

In order to do this, the ShadowQ needs to keep track of
the state of the workflow as it is running. It does this by
reconstructing the state of the workflow using the Pegasus log
files. The log files tell the ShadowQ which jobs are queued,
which jobs are running, and which jobs have finished. They
also indicate when jobs changed state. Using this information
the ShadowQ can construct an accurate snapshot of the current
state of the workflow at any time.

Starting with the current state of the workflow, the Shad-
owQ performs a set of discrete event simulations to predict
future events in the workflow. The goal of these simulations
is to predict two types of events: 1) the finish time of the
workflow, and 2) the start times of the data staging jobs. These
two event types are critical for provisioning the appropriate
resources for the workflow. The finish time of the workflow
indicates whether more resources are needed to complete the
workflow by a given deadline or if fewer resources could be
used, and the start time of the data staging jobs indicates when
network links and data on-ramps need to be provisioned to
accelerate the movement of data. Knowing the approximate
time of these events in advance enables the provisioning
system to ensure that the appropriate resources are allocated
when they are needed. The ShadowQ runs for the duration of
the workflow execution, and periodically re-evaluates its pre-
dictions by running additional simulations. Since simulations
for relatively large workflows only take on the order of seconds
to complete, these periodic simulations can occur every few
minutes.

The simulations performed by the ShadowQ require esti-
mates of the runtimes of the jobs in the workflow, and the
size of the input and output files. These estimates can be
obtained from user estimates, using performance models of
the application, or based on historical data from previous runs
of the workflow [13]. The ShadowQ can update these estimates
based on new information as the workflow progresses.

The ShadowQ estimates not only what the finish time of the
workflow will be given the currently available resources, but
also the level of resources required to complete the workflow
by a given deadline. It does this by performing a set of
simulations that estimate the behavior of the workflow with
varying levels of resources. Every simulation set begins with
a simulation that estimates the finish time of the workflow with
the currently available resources. This first simulation is also
used to predict the starting time of staging jobs. If the workflow
will not be able to meet the deadline given the currently
available resources, or if the workflow will finish significantly
sooner than the deadline, then the ShadowQ performs more
simulations with different resource configurations to search for
the minimum level of resources required to finish the workflow
by the deadline. The resource configurations are set up as a
binary search in order to minimize the number of simulations
that need to be performed.

The starting times of the staging jobs are used to predict
when network links and data on-ramps need to be provisioned.
Based on the start time, duration, and the network resources
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used by each staging job, the ShadowQ can construct a
schedule for provisioning them.

Resource requests are communicated from the ShadowQ
to the Request Manager using a messaging system. The
ShadowQ publishes messages to communicate the time when
the workflow will finish given the currently available resources,
the minimum number of resources required to finish the
workflow by the deadline, and the amount of time until specific
network links and data on-ramps will be required. The Request
Manager responds with messages detailing the availability of
compute and network resources.

B. Möbius - Provisioning and Adaptation

The application-independent controller, Möbius, consumes
these high-level application specific requests (for eg. from
ShadowQ), automatically transforms them to appropriate low-
level infrastructure provisioning requests, runs policies to
adapt infrastructure, and adjusts resource allocations based on
the demands from the application. The purpose of Möbius
is to facilitate ease of use of NIaaS systems for workflow
systems, which enables mapping and adapting applications to
these novel infrastructures, thereby closing the gap between
application abstraction and resource provisioning constructs.

In our design of the end-to-end system (Figure 2), we
made sure that there exists separation of concerns between
the application-aware controller, which is application aware
but NIaaS agnostic, and the application-independent controller,
which is NIaaS aware but application agnostic. We now
describe the components of the application-independent con-
troller.

1) ndlLib: The native request and resource representation
used by ExoGENI is based on declarative representations
using NDL-OWL. Although, this abstraction works well for

topology embedding and provisioning resources at the NIaaS
layer, these are not suitable for higher level applications. The
applications are seldom interested in low-level topologies,
and often have a simplistic view of the kind of resources
they need. For example, the application layer often expresses
resource requirements in terms of needing a “Condor pool”,
“Hadoop cluster”, “distributed Condor pool with on-ramp to
an external data-set”, “MPI cluster with low latency and high
bandwidth”, etc. The goal of ndlLib, an essential component
of Möbius shown in Figure 2, is to provide a library to map
these application abstractions to NIaaS provisioning constructs
to shield the users and applications from the details of the
topology request.

The ndlLib library has a simple graph theoretic view,
and a corresponding programmatic API for generating NDL-
OWL requests. It allows applications to programmatically
create a graph representation of desired compute, network,
and storage resources. The graph can describe either a new
slice of resources or a modification to and existing slice. The
graph can then be saved as NDL-OWL or submitted directly
to ExoGENI. With ndlLib, several common request templates
are readily available for different application classes, and it
becomes relatively easy for users to programmatically obtain
NDL-OWL requests from a very high level application model.

2) Support for stitchport mappers and registries: Stitch-
ports are ExoGENI entities that are used to access resources
beyond the control of ExoGENI, e.g., data sets on campus
resources. What lies beyond a stitchport is assumed to be
IP-based infrastructure of a campus or a lab. One challenge
of using stitchports is that attaching an ExoGENI slice with
an existing local network requires coordination of network
configuration. The ExoGENI slice should have conforming IP
addresses that allow packets to be routable to and from the
external resources and substrates. In order to aid the ExoGENI
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user in this task, ExoGENI provides a two-prong strategy – (a)
an ExoGENI wide stitchport registry service, and (b) stitchport
mapper services owned by the owners of the external resources.
The stitchport registry contains the map from an identifier of a
stitchport known to user to the URL of the stitchport mapper
service. The stitchport mapper service allows the owner of a
stitchport to advertise its availability and corresponding IP-
level configuration to other ExoGENI users and applications.

The current implementation of the stitchport registry and
mapper consists of a RESTful service with Apache CouchDB
[14] backend for storing data. Each document (i.e., record in
SQL-like jargon) in CouchDB consists of a stichport name
and an URL configuration data service URL as key and
value respectively. The URL data service serves the IP-level
configuration information associated with the corresponding
stitchport.

3) Request Manager: The Request Manager is an entity
that orchestrates the above functionalities to construct and send
provisioning and de-provisioning requests to ExoGENI. Based
on requirements from the ShadowQ or high-level applications,
optional monitoring data, the Request Manager invokes ndlLib
and (optionally) the stitchport registry and mapper, constructs
and annotates original and modify requests, and sends them to
ExoGENI to instantiate or modify a slice.

Interaction with ShadowQ: The Request Manager interacts
with the higher level applications (like the ShadowQ) to
consume resource requirements and expectations. As shown
in Figure 2, it is responsible for receiving messages from
the ShadowQ about the future resource requirements and
present state of provisioned resources. The high-level initial
requests have a schema that includes mandatory elements
like template type of the request {condor | hadoop |
mpi}[_sp][_storage][_multi], type of request, and
optional elements like VM image, bandwidth, storage, stitch-
port attributes, etc. The adaptation request schema includes
the current application view of the available resources, QoS

expectations (for eg. number of resources to meet deadline),
and other optional elements to guide the adaptation policies
used by the Request Manager. Messages conforming to the
schema are routed to an AMQP based messaging framework
(RabbitMQ [15]). The Request Manager is responsible for
publishing essential elements of the slice manifests, which
contain the slice state, into the AMQP space so that the
ShadowQ is aware of the state of (newly) provisioned or de-
provisioned resources.

Parsing and annotation of requests: The Request Manager
parses the high-level requests and generates an initial NDL-
OWL request template by invoking ndlLib. Sometimes, even
though Layer 3 network configuration is the job of the ap-
plication/user, it is desirable to automate this configuration,
especially in the case of on-ramps to external data sources.
The Request Manager takes a skeleton of the NIaaS request
and fills in the details related to the higher layers (e.g. IP
address assignment). When an application needs to extend a
slice into a static resource available via a stitchport, it will
obtain the stitchport identifier, and pass that information to
the Request Manager. The Request Manager is responsible
for contacting stitchport registry and mapper, to find out
conforming IP address spaces for the VMs in the slice, so
that when the slice is instantiated, the resources in the slice are
ready to communicate with pieces of infrastructure outside the
control of ExoGENI, and with other elements in the slice. The
automatic IP assignment also aids scalable experimentation.

Interaction with ExoGENI controller: The ExoGENI con-
troller is an entity that serves client requests to ExoGENI for
virtual topologies. The Request Manager interacts with the
ExoGENI controller to send the NIaaS resource requests and
obtain the slice manifests. It periodically queries ExoGENI
to find out when resource provisioning has successfully com-
pleted, and then sends out the updated slice manifest to the
AMQP space for consumption by the ShadowQ.



4) Resource Adaptation: The Request Manager interacts
with one or more pluggable policy modules that decide on
when to ask NIaaS for more resources, when to relinquish
existing resources, how many resources to ask for while still
satisfying the the requirements imposed on the application end
by ShadowQ. The create and modify policies act on infor-
mation from ShadowQ, monitoring data from slices, current
provisioning state from ExoGENI, and decide on the actions
to take on the slice. These control policies actuate dynamic
infrastructure modifications for closed-loop feedback control.
The actions include enabling compute elasticity - growing and
shrinking compute resource pools. Figure 3 shows the different
phases of resource adaptation.

III. EVALUATION

In this section, we will present our evaluation of workflow
introspection and it’s use with Möbius to drive provisioning
and adaptation. We will first describe the experiment setup
in Section III-A. In Section III-B, we present our results on
the accuracy of workflow introspection with ShadowQ. In
Section III-C, we present the evaluation of the use of ShadowQ
estimates for adaptation of the representative workflow.

A. Experiment Setup

1) Workflow Application - Montage: The experiments used
a data-intensive astronomy workflow application as a represen-
tative driving example. The workflow is based on the widely
used Montage [16] astronomy image application developed
at NASA’s Infrared Processing and Analysis Center. The
Montage workflow is given a region of the sky for which a
mosaic is desired, the size of the mosaic in terms of square
degrees, and other parameters such as the mission and band to
be used. The input images are first reprojected to the coordinate
space of the output mosaic, the reprojected images are then
background rectified and finally co-added to create the final
output mosaic. Figure 4 shows the majority of the tasks and
dependencies in the workflow. Montage tasks are single-core,
take one or more input images, perform an operation to re-
project or combine images, and write an output image.

Fig. 4. Montage workflow tasks & dependencies.

2) Infrastructure: We conducted our experiments using
two racks from the ExoGENI testbed - an IBM rack at the
Florida International University (FIU), Miami, FL, and a Cisco
rack at West Virginia Net (WVN), Morgantown, WV. Details
about the hardware on these two racks can be found on the
ExoGENI wiki [17]. Slices were provisioned from these racks
by sending requests for virtual topologies consisting of a set of
virtual machines (VM) connected via a broadcast link with a
bandwidth of 500 Mb/s. Since Pegasus uses HTCondor, the
request to ExoGENI consisted of a HTCondor master VM
and a specified number of HTCondor worker VMs connected
by links with desired bandwidth, based on condor request
template. The VM images had pre-requisite software installed
like HTCondor and Pegasus. The ExoGENI postboot script
feature was leveraged to start various HTCondor daemons on
VM startup so that the HTCondor environment is ready as soon
as the slice setup is complete. Adaptation actions happened as
per Figure 3.

B. Accuracy of ShadowQ Predictions

We conducted experiments to evaluate the accuracy of
the simulations used by the ShadowQ. The goal of these
experiments is to determine whether the ShadowQ is able to
predict the finish time of the workflow, and the start time of
the individual jobs, with enough accuracy to be useful. We
estimate that the final system would require an accuracy of
approximately 5 minutes for the finish time of the workflow,
and 2 minutes for the start time of individual jobs within 10
minutes of their actual start time.
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The experiments were conducted on the FIU rack using 1
HTCondor master VM and 4 HTCondor worker VMs. Each
worker VM was configured to advertise one Condor job slot.
The HTCondor scheduler was configured with a 60 second
maximum scheduling interval, and a 20 second minimum
scheduling interval, so that idle jobs are matched with available
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resources every 60 seconds, and when they are queued if it has
been more than 20 seconds since the last scheduling cycle.
The workflow engine behind Pegasus, DAGMan, has a polling
interval of 5 seconds. These values are used as parameters in
the ShadowQ simulations.

The experiments used a 4-degree Montage workflow, de-
scribed in section III-A1, with 3,741 tasks, 1.6 GB of input
data, 15 GB of intermediate data, and 3.4 GB of output data.
The workflow was clustered based on the number of available
job slots, so that each level of the workflow contained no more
than 4 jobs. The final, executable workflow contained 47 jobs,
including 15 staging jobs, 2 auxiliary jobs, and 30 compute
jobs. The critical path of the workflow is approximately 2,500
seconds, and the mean job duration is approximately 143
seconds.

In order for the ShadowQ to simulate the workflow it
needs to have estimates of the durations of all the jobs in
the workflow and the sizes of input and output files that
are transferred. In the production version of this system,
those estimates will come from performance models that are
automatically derived from historical data. Since these models
are not currently available, for the purposes of this evaluation
we ran the workflow twice: once to obtain runtime estimates,
and then again to evaluate the results of the simulation. In
other words, we used the results of the first run to predict the
second. Using this approach resulted in total job runtime error
in the second run of 5% (sum of absolute errors divided by
sum of job runtimes). Since the ShadowQ does not currently
include a network model for predicting transfer times given
data size, the runtimes of staging jobs were used instead.

In this experiment, the ShadowQ was configured to sim-
ulate the remainder of the workflow every 30 seconds for
the entire runtime of the workflow. For this workflow each
simulation takes much less than 1 second to complete, so

frequent simulations are feasible. We expect that production
workflows will also have relatively short simulation times to
enable frequent re-evaluation of resource requirements.

Figure 5 shows the absolute error for the estimated finish
time of the workflow. The error is computed by taking the
absolute value of the difference between the finish time of the
workflow estimated by the simulations, and the actual finish
time of the workflow. For this experiment the error was never
more than about 60 seconds for the entire duration of the
workflow.

Figure 6 shows the absolute error for the estimated start
time of all the jobs in the workflow for the last 10 minutes
before they actually started. The error is computed by taking
the absolute value of the difference between the start time of
the job as predicted by the simulation, and the actual start
time of the job. Only data points from the simulations that
occurred less than 10 minutes before the actual job start time
were included. In all cases, the error was never more than about
90 seconds, and in the majority of cases the error was less than
40 seconds. The relatively large errors for the stage_in jobs
are caused by the fact that these jobs are treated differently
than the others by HTCondor, which is not accounted for in
the simulation. Since the stage_in jobs occur at the start
of the workflow, predicting their start times accurately is less
critical than the others. Nonetheless, in the future, we plan to
update the simulation to account for this behavior.

The results of these experiments suggest that the simula-
tions done by the ShadowQ are accurate enough to be used
for resource provisioning purposes. The simulations were able
to accurately predict the finish time of the workflow to within
approximately 60 seconds, and the start time of individual jobs
to within approximately 40–90 seconds. The accuracy of these
predictions depends significantly on the accuracy of the run-
time estimates of individual jobs. Since this experiment used
runtime estimates that were fairly accurate (total error of 5%),
we would expect production workflows with larger runtime
estimate errors to have larger simulation errors. Nonetheless,
these initial results suggest that the approach is feasible.

C. Using ShadowQ for Adaptation

In this section, we evaluate the use of ShadowQ estimates
in adaptation and provisioning of the Montage workflow. These
experiments were conducted on the WVN rack. A range of
sizes of HTCondor pools were used for these experiments, 1
through 16 HTCondor worker VMs and 1 HTCondor master
VM. Each worker VM was configured to advertise one Condor
job slot. Hence, for our experiments, the number of slots is
equal to the number of HTCondor worker VMs.They used the
same 4-degree Montage workflow described in the previous
section. We used a workflow clustering of 8 and ShadowQ
runtime estimates based on this configuration with 8 HTCon-
dor worker VMs.

Figure 7 shows the workflow makespan (in seconds) using
different numbers of HTCondor job slots. These runs were
done without ShadowQ and adaptation. Each run with a
specific number of VMs was allocated those resources for
the entire duration of the run. We observe that the work-
flow makespan decreases with increasing number of allocated
slots, up to 8 slots, and stays constant beyond that. This is



expected because of the chosen clustering factor (8), since
the maximum degree of parallelism in the workflow execution
is determined by that factor. The purpose of obtaining these
workflow makespan values was to determine the minimum
possible workflow execution times for each value of slot count.
The workflow makespan value using only one VM / slot is
particularly important for the following experiments because
that value determines the minimum possible “CPU seconds”
needed to complete the tasks of the workflow, this case
corresponding to 100% utilization of the compute resource.
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Fig. 7. Workflow makespan vs. number of slots used (no ShadowQ estimates).

From Figure 7, we determined the minimum makespan
possible for this workflow from the data point corresponding
to 8 slots. Let us refer to it as min_deadline(8). In the
following experiment, as an input to ShadowQ, we set the
expected deadline (or time to completion) as different factors
of min_deadline(8), namely 1.0, 1.25, 1.5, 2.0, i.e. we
wanted to relax the deadline of the workflow and find out
whether ShadowQ was able to adjust the resources dynamically
as the workflow executes. Let us refer to these factors as
different “deadline relaxation factors”.

Figure 8 shows the plot of resource usage over workflow
execution for different deadline relaxation factors. The X-axis
represents seconds from start of the workflow execution, The
Y-axis represents the number of slots used at different points
of the workflow execution. Note that slots can come and
go through provisioning of new HTCondor worker VMs or
through de-provisioning of existing HTCondor workers during
the workflow execution. Each of the four data plots correspond
to a particular deadline relaxation factor, and start with 8 VMs
allocated at the start of workflow execution. We observe that,
based on the deadline relaxation factors, ShadowQ is able to
use its estimates and simulation results to predict resource
requirements at different points of the workflow execution, and
the Möbius system is able to satisfy the resource requirements
as requested by the ShadowQ. We also observe that the
resource usage patterns during different points of execution
depends on the value of the deadline relaxation factor. For
different deadline relaxation factors, ShadowQ is able to adjust
the requirements dynamically, thereby minimizing resource
usage and maximizing resource utilization, while still meeting

the deadlines. The shape of the step graph will also depend
on the structure of the workflow and the requirements of the
workflow in different phases. This particular example is “top
heavy”, meaning that a lot more computations happen during
the initial parts of the workflow, and since we started with
8 allocated VMs, we only see VMs being de-provisioned as
workflow progresses.

0 500 1000 1500 2000 2500 3000 3500
0

1

2

3

4

5

6

7

8

9

Workflow Execution Time (seconds since start of workflow)
R

e
s
o
u
rc

e
s
 U

s
e
d

Resource usage during workflow execution [starting with 8 slots]

 

 

deadline = 1.00 * min_deadline(8)

deadline = 1.25 * min_deadline(8)

deadline = 1.50 * min_deadline(8)

deadline = 2.00 * min_deadline(8)

Fig. 8. Resource usage: different deadline factors

The previous result shows that ShadowQ makes resource
adjustments happen during workflow execution, but does not
show how much better resource utilization actually results
from these adjustments. For that, we first need to understand
what is the minimum possible resource usage for the given
workflow. From figure 7, we know that the maximum resource
utilization happens when we are using only one VM during
the entire run of the workflow, and the corresponding value of
resource usage for this workflow is 6060 “CPU seconds”, i.e
there is at least 6060 “CPU seconds” (= “CPU seconds(min)”)
of available compute in this workflow. Let’s define “Resource
Usage Factor” as the ratio of actual “CPU seconds” used and
“CPU seconds(min)”. Higher “Resource Usage Factor” implies
lower resource utilization.

Figure 9 plots the “Resource Usage Factor” for different
deadline relaxation factors. We observe that higher deadline
relaxation factors result in lower resource usage up to a point.
At the deadline relaxation factor of 1.5, we sacrifice about
50% of the execution time, but can be within 20% of the best
resource utilization, and would result in about 50% saving in
resource usage. When there are costs associated with resource
usage, that is a significant saving when deadline relaxation
is possible. With an even higher relaxation factor, we would
expect the “Resource Usage Factor” value drop to close to 1.
There is always some penalty in the time it takes to provision
or de-provision VMs, and the limits of accuracy of ShadowQ
predictions, which is why the ratio will never drop to 1. From
this result, we can infer that the ShadowQ predictions and the
adaptation by the Möbius system offer a unique capability to
explore this space. Production workflows would benefit greatly
by the determination of this inflection point.

Figure 10 shows the case when the initial allocation
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Fig. 9. Resource usage factors for different deadline relaxation factors.

was only for 1 HTCondor worker VM. When we plot the
number of resources used over the workflow execution for
different deadline relaxation factors, 0.33, 0.5, 0.75 relative to
min_deadline(1), we observe that ShadowQ is able to
adjust the resource usage by provisioning and de-provisioning
VMs, i. e. it exercises both forms of resource adaptation -
addition and deletion of worker VMs.
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IV. RELATED WORK

There has been considerable work [18], [19] on investigat-
ing the effectiveness and applicability of IaaS cloud platforms
for executing scientific workflows. Existing workflow engines
like Pegasus and Kepler have features [20], [21] that can lever-
age Amazon EC2 and other cloud platforms for running work-
flow steps. Researchers have also done cost and performance
evaluation of scientific workflows on clouds [22], [23]. There
is also existing work on performance analysis and evaluation of
cloud infrastructures for scientific computing [24], [25], [26].

A number of public cloud providers (Amazon EC2, Mi-
crosoft Azure, Rackspace) offer IaaS abstractions and some
ability to orchestrate them together with networks through
mechanisms like CloudFormation [27] and Heat [28]. They
provide a great deal of resource elasticity. However, their
closed nature and difficulty of moving data in, and especially,
out of their infrastructure, limit their uses in science appli-
cations. Existing cloud research testbeds like FutureGrid [29]
are not programmable from a networking perspective. Globus
Online [30] project permits users to efficiently move data from
one computing resource to another, but doesn’t provide unified
environments for science workloads.

V. CONCLUSIONS AND FUTURE WORK

We proposed the Möbius controller that facilitates the use
of networked clouds for workflow systems like Pegasus. We
presented ShadowQ that predicts dynamic resource needs using
a novel workflow introspection technique. We showed how
these predictions can be used with Möbius to actuate infras-
tructure adaptation in response to dynamic workflow needs.
We also showed that the predictions are fairly accurate and
the interplay of prediction and adaptation can balance the per-
formance and resource utilization for the Montage workflow.
In the future, we plan to develop and evaluate other prediction
outcomes from ShadowQ. We plan to compare the accuracy
of the estimates with other non-lookahead predictions. We
plan to evaluate other infrastructure adaptation mechanisms,
like dynamically adding storage, network links, or changing
bandwidth on links.
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