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Abstract—Cloud computing facilitates resource sharing and
provides flexibility and affordability. Resource allocation and
pricing is critical to the system performance, and auction has
been believed as a promising approach for fairness and effi-
ciency. To design a practical cloud resource auction, we need
to consider five major challenges, including strategy-proofness,
online framework, heterogeneous request, deadline-awareness,
and social welfare maximization. However, none of existing works
have fully addressed these five challenges. In this paper, we
present the first strategy-proof online combinatorial auction for
deadline-aware cloud resource allocation which jointly considers
the five design challenges. Our analyses show that our auction
achieves both strategy-proofness and approximate efficiency on
social welfare. Our evaluation results verify the efficacy of our
design and show that our auction achieves good social welfare
without the loss on request completion.

I. INTRODUCTION

Cloud computing emerges as a transformative paradigm
to accommodate various services and reform computing en-
vironments. Leveraging resource virtualization technologies,
cloud computing offers users the opportunity of sharing cloud
resources and the flexibility and affordability for processing
diverse jobs with minimal concern on infrastructure reliability
and management overhead. Indisputably, resource allocation
and pricing plays a critical role in cloud system performance.
Fixed pricing policies fail to react to market supply and de-
mand fluctuation, leading to either overpricing or underpricing
both of which jeopardize overall system social welfare.

Among the best-known market-based allocation mecha-
nisms, auctions stand out as a promising approach to ef-
fectively managing cloud resource supply and demand for
fairness and allocation efficiency [4]. Recently, Amazon EC2
has launched a bidding-style model, named Spot Instances
[1], which offers a variety of pre-configured virtual machines
(VMs) with much lower prices than on-demand resources.
Nevertheless, as a first-step attempt on market-based cloud
resource allocation scheme design, Spot Instances inevitably
suffers from design limitations such as unpredictable job ter-
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mination, vulnerability to market manipulation, and inflexible
bidding support.

Designing a practical auction mechanism for cloud resource
allocation is challenging, because not only difficulties in
general auction design have to be addressed, but also inherent
characteristics of cloud resource request should be taken into
account. We list four major challenges as follows:
Strategy-proofness: Cloud resource users are normally ratio-
nal and selfish, and thus are usually interested in maximizing
their utilities. In cloud resource auctions, selfish users can mis-
report their information intrinsic valuations, resource demands,
etc. Such market manipulation will not only hurt the benefit of
truthful users but also jeopardize overall system performance.
Online framework: In real world, cloud users arrive on and
depart from the cloud platform on the fly. The online nature
makes cloud resource auctions fundamentally different from
offline scenarios as decisions will be made without complete
future information. The temporal aspect of user behavior, i.e.,
reporting arrival and departure time, can make the auctions
unfortunately more vulnerable to strategical manipulation,
which further complicates the design.
Heterogeneous requests: A practical cloud resource auc-
tion mechanism should be combinatorial to accommodate
heterogeneous requests from cloud users. The combinatorial
characteristic comes in two dimensions, namely, VM bundling
and time elasticity. On one hand, cloud computing applications
often consist of multiple layers that usually need different VM
instances. On the other hand, different jobs naturally have
different required running time. Therefore, a combinatorial
auction will be essential to give users flexibility on resource
request expression.
Deadline-awareness: In practice, cloud resource requests are
usually associated with different deadline requirements. For
example, a resource request for running data analytic jobs
is often time sensitive; while one for running general batch
jobs usually has a loose deadline. A practical cloud resource
auction is desired to be able to recognize job deadlines, which
will be beneficial to both cloud systems and users. For cloud
systems, deadline-awareness can improve allocation capacity
and social welfare by enhancing request scheduling flexibility.
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For users, deadline-awareness reduces competition intensity,
which increases users’ winning chances and thus lowers cost,
leading economies of scale.
Social welfare: The last but not least challenge is to maximize
social welfare, i.e., the sum of all winning users’ valuations on
their requests. However, finding the allocation of the optimal
social welfare in a combinatorial auction is normally com-
putationally intractable. Hence, designing an approximately
efficient allocation mechanism will be of great interest.

In this paper, we conduct an in-depth study on the problem
of auction mechanism design for cloud resource allocation,
jointly considering all above challenges. Although a number
of designs, e.g., [12]–[14], [16], [17], were recently proposed,
unfortunately, none of these works has fully addressed all the
four design challenges (as shown in Table I). We propose a
strategy-proof online auctIon framework for deadline-aware
cloud resource allocation. In the cloud resource auction, all
cloud resource users arrive in the system on the fly, and
submit their sealed resource requests to the cloud resource
system. The cloud resource system runs the auction to decide
the auction winners, resource allocations, and the charges for
winners.

We make the following contributions in this paper:

• To the best of our knowledge, we present the first
strategy-proof online combinatorial auction mechanism
for the problem of deadline-aware cloud resource alloca-
tion.

• Our analysis shows that our proposed auction mechanism
is strategy-proof and achieves a nontrivial competitive
ratio.

• We implement our auction design and evaluate its perfor-
mance. Our simulation results verify the efficacy of our
design.

The rest of this paper is organized as follows. In Section
II, we present technical preliminaries. In Section III, we
demonstrate main design principles. In Section IV, we describe
our auction design in detail. In Section V, we present the
analysis on our design. In Section VI, we present evaluation
results. In Section VII, we review related works. Finally, we
conclude our paper in Section VIII.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we first describe our auction model for
deadline-aware cloud resource allocation. Next, we review
several important solution concepts used in this paper. Lastly,
we present the problem formulation.

A. Cloud Resource Auction Model

We model the process of deadline-aware cloud resource
allocation as an online combinatorial auction. A cloud system,
called seller, would like to lease resources to cloud resource
users. The cloud system contains multiple types of resources
(e.g., CPU, RAM, and Disk), and we denote the resource set

by C , {ci|i ∈ [C]},1 meaning that there are ci units of type-i
resource in system. The cloud system operates in a discrete
time-slotted fashion spanning time T , {t|t ∈ [T ]}, where
the duration of each time slot is τ . It offers multiple VM
types M , {mi|i ∈ [M ]}, of which each type mi refers to a
vector mi , (m1

i ,m
2
i , . . . ,m

|C|
i ), meaning that a type-i VM

instance contains mj
i units of type-j resource. During cloud

system operation, VM instances can be dynamically assembled
as long as required resources are available.

There is a set of cloud resource users N , called buyers,2 who
would like to bid for desired cloud resources by submitting
requests to the cloud system. Each buyer i ∈ N owns her
request θi ∈ Θi from the space Θi, and θi is buyer i’s private
information, called type, which is characterized by a tuple

θi , (ai, hi, di, ri, vi), (1)

where ai is i’s type release time; hi is the number of
contiguous time slots she requests; di is the deadline by which
her job needs to be completed; ri denotes her resource demand
vector ri , (r1

i , r
2
i , . . . , r

|M |
i ), indicating that rji instances of

type-j VM are requested within θi; and vi is her valuation
on the request θi. We assume that each user is allowed to
request no more than rmax VMs and no more than hmax time
slots. In our online auction model, ai is interpreted as buyer
i’s arrival time, and di is interpreted as her departure time.
As is widely assumed (e.g., [3], [10]) as well as is backed by
the heart-beat scheme [7], we hold the assumption that every
user cannot declare an earlier arrival time or a later departure
time than her truthful one. We use θ = (θ1 . . . , θ|N |) to denote
the vector of all buyers’ types, and by the notation convention
use θ−i = (θ1, . . . , θi−1, θi+1, . . . , θ|N |) to denote the same
vector without buyer i’s type. Thus, we have θ = (θi, θ−i).

In runtime, each buyer i ∈ N arrives in the cloud sys-
tem in time slot âi and declares to the seller her resource
request θ̂i , (âi, ĥi, d̂i, r̂i, v̂i).3 The cloud resource auction
determines the winners and schedules their requests on the fly.
Formally, our online auction mechanism for deadline-aware
resource allocation is defined as Γ = (Θ1, . . . ,Θ|N |,F(·)),
where the function F(·) : Θ1 × . . . × Θ|N | → O maps the
declared types to a allocation outcome o ∈ O. An outcome
o = (W,S, P ) consists of a winner set W , a scheduling
decision vector S = (s1, . . . , s|N |), and a payment vector
P = (p1, . . . , p|N |). If a buyer i is selected as a winner, i.e.,
i ∈ W , she will be granted to start running her job in time
slot si and will need to pay pi for her resource usage.

We consider that all users are rational and selfish, and their
objectives are to maximize their own utilities. Each buyer i
has a quasilinear utility ui defined as

ui(F(θ̂i, ˆθ−i), θi) ,

{
vi − pi, if i ∈W ;

0, o.w.
(2)

1For the convenience of description, given a set X , we use |X| to denote
its size, and use [X] to denote the set {1, 2, . . . , |X|}. Unless otherwise
specified, this definition shall apply to all notations throughout this paper.

2We use buyer and user interchangeably in this paper.
3v̂i is buyer i’s declared valuation, and thus represents her bid in the auction

indicating the maximum price she is willing to pay for θ̂i.
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TABLE I
COMPARISON WITH EXISTING WORKS

Auction designs Strategy-proofness Online framework Heterogeneous requests Deadline-awareness Approximate social welfare
[13] " % " % "

[17] " % " % "

[16] " " % " "

[14] " " % % "

[12] " " " % "

Our auction " " " " "

We assume that a buyer has no preference over different
outcomes, if the utility is the same to herself. In contrast to
users, the overall objective of the auction mechanism is to
maximize social welfare, which is defined as follows.

Definition 1 (Social Welfare): The social welfare in an
online auction is the sum of all winners’ valuations on the
allocated items, i.e., on resource requests in our cloud resource
auction, within the lifespan.

SW ,
∑
t∈T

∑
i∈Wt

vi, (3)

where Wt is the set of winners determined within time slot t,
so W = ∪t∈TWt.

B. Economic Properties

We briefly review several solution concepts from game
theory and mechanism design. These solution concepts build
the theoretical foundation of our cloud resource auction design.

Definition 2 (Dominant Strategy [8]): A strategy sti is
player i’s dominant strategy, if for any st′i 6= st and any
strategy profile of the other players st−i, we have

ui(sti, st−i) ≥ ui(st′i, st−i). (4)

Definition 3 (Strategy-Proof Mechanism [6]): A direct-
revelation mechanism is a mechanism, in which the only
strategy available to players is to make claims about their
preferences to the mechanism. A direct-revelation mechanism
is strategy-proof if it satisfies both incentive-compatibility and
individual-rationality. Incentive-compatibility means revealing
truthful information is a dominant strategy for each player.
Individual-rationality means each player can always achieve
at least as much expected utility from faithful participation as
staying outside.

In our online combinatorial cloud resource auction, the
strategy-proofness means that no buyer i ∈ N can increase her
utility by reporting θ′i 6= θi. i.e., every buyer’s best strategy to
simply reveal her truthful request tuple, i.e., θ̂i = θi.

C. Resource Allocation Problem

We formulate the online cloud resource allocation prob-
lem as a multidimensional multiple-choice knapsack problem
(MMKP). The MMKP here can be described as follows. There
are |N | groups of items, where each item represents a specific
resource assignment θij associated with a fixed starting time
sij , and each group li represents the set of i’s all possible
allocations θij in which sij ∈ [ai, di−hi+1]∪0, where sij = 0

means not winning. Let rijt be the resource demand vector of
θij in time slot t, and thus rijt = ri if t ∈ [sij , sij + hi)
and sij 6= 0; otherwise rijt = (0)|M |. The objective of
the MMKP is to pick exactly one item from each group for
maximum total value of the collected items, subject to resource
constraints. Consequently, our resource allocation problem can
be formulated as an integer programming.

Problem: Online Combinatorial Cloud Resource Allocation
Objective:

Maximize
∑
i∈N

∑
j∈[li]

xij v̂i (5)

Subject to:∑
i∈N

∑
j∈[li]

∑
k∈[M ]

xijm
c
kr

k
ijt ≤ cj , ∀c ∈ [C], ∀t ∈ [T ] (6)

∑
j∈li

xij = 1, ∀i ∈ N (7)

xij = {0, 1}, ∀i ∈ N,∀j ∈ [li] (8)

Here, xij are the picking variables, and xij = 1 indicates
that user i is allocated requested resource and granted to start-
ing in time slot sij . We use v̂i rather than vi in the objective,
because the cloud system only knows users’ bids instead of
their private valuations. However, if the cloud resource auction
is strategy-proof, all users will have incentives to faithfully
submit their intrinsic valuations as bids.

Due to users dynamic arrival and departure, decisions in
an online cloud resource auction should be made on the
fly. However, deriving the optimal allocation needs complete
knowledge over the entire lifespan, which is apparently not
practical. Even if delay computation of payments could be
tolerable, solving the above integer programming is still NP-
hard, which makes the celebrated VCG mechanism [8] inap-
plicable. Considering the computational intractability of this
problem, we propose an alternative design with an online
greedy allocation algorithm that will achieve approximately
efficient social welfare.

III. DESIGN PRINCIPLES AND FRAMEWORK

In this section, we present main design principles that shape
the online framework of our deadline-aware cloud resource
auction.

A. Temporal Bidding Competition

Achieving strategy-proofness is challenging in an online
cloud resource auction because of the lack of future infor-
mation. Supply curve [5] based allocations, e.g., [16], could
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be an effective method, as they can carry out allocation by
considering each request sequentially and individually. How-
ever, this advantage potentially turns into a shortcoming in that
the characteristic of loose competition produces performance
uncertainty in terms of social welfare. For example, supposing
there is a single unit of CPU for lease, and multiple users bid
for it on the fly. Supply curve based schemes will allocate the
CPU to the first user whose bid exceeds the marginal price
without considering the following users at all.

t time

A EB DCA D

t+2t+1

Φt+1 Φt+2 Φt+3

Fig. 1. An illustrative example of temporal bidding competition. BuyersA−E
arrive on the go to bid for resources. We use red circles to represent losing
users, and green circles to represent winning users. Dashed-border rectangles
indicate active user sets.

To obtain reasonable performance on social welfare, our
auction is instead constructed by a series of single round auc-
tions. Figure 1 illustrates the framework of temporal bidding
competition. Specifically, our online auction maintains a group
of active users Φ. When a user joins the system (e.g., user A
in time slot t), she will be included in Φ. By the beginning
of each time slot t, our auction allows all users in group Φ
(e.g., A and B in time slot t) to compete resources by bidding,
and then determines the winners Wt (e.g., user B in time slot
t). Winning users will be removed from Φ (e.g., user B), so
will the users whose requests can no longer be satisfied due
to passed deadlines (e.g., user C).

B. Adaptive Auction Window

Heterogeneous requests should be supported to offer bidding
flexibility. However, due to the two-dimensional combinatorial
characteristic, conventional online auction designs tailored to
the canonical expiring items environment [7] turn to be not
feasible to solve our cloud resource allocation problem. These
online auctions are generally designed by connecting single
round auctions serially. Hence, all these single round auction
modulars are temporally separated, i.e., none of allocations
temporally spans more than one round. Despite the simplicity,
it is difficult to choose an appropriate lifespan for all single
round auctions. A shorter lifespan can cause the incapability
of processing longer jobs; while a longer lifespan can make
users suffer from waiting, leading to delayed response or even
worse allocation failure.

Different from the conventional design, our auction exploits
a novel framework using adaptive auction window. Cloud
resource usage could be difficult to be precisely predicted,
however, clear diurnal usage pattern and periodic demand
variation exist [2], [11], providing the insight that request
arrival and resource usage exhibit certain variation trends over
a relatively long duration. Taking advantage of this, our auction

timet t+1 t+4t+3t+2

window size Lt

execute 

Mt

execute 

Mt+1

CPU

CPU

MEM

Fig. 2. The illustration of adaptive auction window. Cloud resources in dif-
ferent colors represent different types of resources. Dashed-border rectangles
represent auction windows.

dynamically adjusts the auction window size, i.e., the number
of time slots within which resources will be auctioned off in
each round. Specifically, as shown in figure 2, the auction
conducts a single round auction Mt by each time slot t ∈ T .
Right after determining the allocation and clearing the market
for Mt, the auction will update and release the window size
Lt+1 forMt+1 (please refer to Section IV-C) before accepting
requests within time slot t.

C. Deadline-awareness

Cloud resource requests are usually associated with dead-
lines, indicating users can have multiple interested allocations.
The simplest method to accommodate multi-minded users is
to accept recursive requests submission, i.e., each user can
repeatedly submit her request until it is accepted or its deadline
passes the requirement. The other approach exploited in this
paper is to allow the system to recognize deadlines associated
with requests. We use a simple example shown in Figure 3 to
illustrate the benefit of deadline-awareness.

timet t+1 t+4t+3t+2

request 1

CPU
CPU

MEM

a1=t d1=t+3

request 2

a2=t d2=t+2

Fig. 3. An illustrative example to show the efficacy of deadline-awareness.

TABLE II
ALLOCATION RESULTS OF THE ILLUSTRATIVE EXAMPLE

Schemes Mt+1 Mt+2

Recursive submission: s1 = t+ 1, s2 = 0 s2 = 0
Deadline-awareness Case 1: s1 = t+ 1, s2 = 0 s2 = 0
Deadline-awareness Case 2: s1 = t+ 2, s2 = t+ 1 —-

Suppose request 1 and request 2 are both submitted in time
slot t, and both need 2 CPUs and 1 MEM. Request 1 needs
2 time slots and has the deadline of t + 3; while request 2
needs 1 time slot and has the deadline of t + 2. We assume
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request 1 has higher priority. Table II shows the allocation
results. By recursive submission, request 1 will be assigned
to start in time slot t+ 1; and request 2 will not be accepted
due to conflict. However, a deadline-aware allocation auction
can result in two possible results. One is the same as that
by recursive submission, but the other one will successfully
accept both these two requests. Therefore, deadline-awareness
could increase the opportunity of scheduling more requests,
leading to better system performance.

IV. AUCTION DESIGN

In this section, we present our auction mechanism in de-
tails. Our auction consists of four major components: winner
determination, load balancing scheduling, dynamic window
adaptation , and clearing price calculation. Considering that
computing the optimal allocation is not practical, our auction
exploits a greedy algorithm to determine winners. Further-
more, our auction uses a load balancing scheduling scheme
to decide resource assignments for winning users. In addition,
our auction incorporates a novel scheme of dynamic window
adaptation into the online framework for improving allocation
capacity and optimizing social welfare. Finally, our auction
uses a critical bid based scheme to determine the clearing
prices for the winners.

A. Winner Determination

We first introduce average per-unit bid, which will be used
as the ranking metric for our greedy allocation algorithm.

Definition 4 (Average Per-unit Bid): Given each user i’s
declared resource request θ̂i = (âi, ĥi, d̂i, r̂i, v̂i), her corre-
sponding average per-unit bid πi is defined as

πi =
v̂i

ĥiA(r̂i)
, (9)

where

A(r̂i) =

√∑
j∈[C] (X (r̂i, j))

2

|C|
, (10)

and

X (r̂i, j) =

∑
k∈[M ] r̂

k
im

j
k

cj
. (11)

Here, X (r̂i, j) calculates the aggregate proportion of re-
source j requested by user i per time slot; and A(r̂i) quantifies
user i’s overall resource usage per time slot by calculating
the quadratic mean of X (r̂i, j),∀j ∈ [C]. The rationale of
calculating the quadratic mean of usage proportions instead
of their sum, although it has been widely used (e.g., [13]), is
that the quadratic mean can reflect the intensity of resource
usage more effectively in a multi-type resource environment.
Supposing the system contains two types of resources, and
user A and B submit the same request except that user A
requests 50% of each resource, while user B requests 100%
and 0, respectively. The expected result should be that user A
will be considered preferentially, as B’s request will exhaust
one resource, leading to severe scheduling unavailability. The
average per-unit bid defined above can differentiate these two

requests, however, it would not if we calculated the sum.
Similar to [10], we assume πi ∈ [πmin, πmax].

The auction ranks all users in Φt according to average
per-unit bids πi, i ∈ Φt in non-ascending order. In Mt+1,
following the sorted user list, the auction greedily selects
each user i ∈ Φt as a candidate, and calls the algorithm
LBS(·) (please refer to Section IV-B)to determine her resource
assignment. If LBS(·) returns a successful assignment, i.e.,
si 6= 0, i will be added into winner set Wt+1. Algorithm 1
WD(·) shows the pseudo code of the process of determining
winners.

Algorithm 1: Winner Determination WD(·)
Input: Request set {θ̂i|i ∈ Φt}
Output: Winner set Wt, and scheduling decision Dt

1 Calculate πi, ∀i ∈ Φt;
2 Sort πi: π1 ≥ π2 ≥ . . . ≥ πΦt ;
3 for j = 1 to Φt do
4 sj ← LBS(θ̂j);
5 if sj 6= 0 then
6 W ←W ∪ j;
7 D ← D ∪ (j, sj);

8 return W and D;

B. Load Balancing Scheduling

Since each user may have multiple equally preferred alloca-
tions, i.e., multiple assignments with different starting times,
an auction needs to schedule requests for winning users. A
desired request scheduling scheme should be able to balance
resource occupation, so that resources in different time slots
can be allocated smoothly, avoiding allocation fragmentation
and meanwhile reserving allocation availability for the future
rounds. To this end, we design a load balancing scheduling
scheme LBS(·) based on a measure called allocation occupa-
tion proportion.

Definition 5 (Allocation Occupation Proportion): Suppose
in Mk, xti units of type-i, i ∈ [C] resource in time slot t,
t ∈ [k, k+Lk) have been allocated. The immediate allocation
occupation proportion λ of Mk is defined as

λk =

√√√√∑k+Lk−1
t=k

∑
i∈[C]

(
Υ(t)(xji/ci)

2
)

Lk|C|
, (12)

where

Υ(t) =

{
0, if t = k;

γt−k, if t ∈ (k, k + Lk).
(13)

Our auction schedules the request of each winning user
by choosing the resource assignment that will result in the
minimum allocation occupation proportion. Specifically, when
a buyer i ∈ Φk is selected as a winner inMk, the auction will
attempt to schedule it on all feasible assignments in terms of
current resource availability and the deadline requirement, and
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calculate each corresponding λk. Then, the auction will select
the one which corresponds to the minimum λk. Algorithm 2
summarizes this process.

Algorithm 2: Load Balancing Scheduling LBS(·)
Input: Buyer i’s resource request θ̂i
Output: Buyer i’s scheduling decision si

1 /* Suppose currently in Mk, yt
c units of

type-c resource are available in time

slot t, c ∈ [C], t ∈ [k, k + Lk). */

2 λk ←∞, λ′k ←∞, si ← 0, s′i ← 0;
3 for j = k to k + Lk − 1 do
4 if j + hi − 1 > di then
5 break;

6 if ∃x ∈ [C] ∧ ∃y ∈ [j, j + hi)⇒ xtc <
∑
z∈[M ] r̂

z
im

c
z

then
7 continue;

8 schedule θ̂i with s′i = j, and calculate λk;
9 if λk < λ′k then

10 λ′k ← λk, si ← j;

11 removed scheduled θ̂i, s′i ← 0;

12 schedule θ̂i in si;
13 return si;

C. Dynamic Window Adaptation

Resource allocation for two-dimensionally combinatorial
heterogeneous requests with service guarantee is faced with
a challenging design dilemma. On one hand, accepting more
current requests increases the risk of having to reject more
future requests which might be of higher valuation; on the
other hand, delaying decisions has to face the risk of few
requests being submitted in the future and pending requests
passing deadlines.

To alleviate the dilemma, our design exploits a novel
online framework, namely dynamic window adaptation, which
dynamically and adaptively updates the auction window size
to manage the resource supply. Specifically, our auction up-
dates auction window size according to the average allocation
occupation proportion λH calculated as

λH ← (1− ω)λH + ωλt. (14)

Here, λt is the ultimate allocation occupation proportion of
Mt that is calculated right after the auction finishes Mt, i.e.,
by time slot t, and ω is the proportion averaging constant.
Upon obtaining λt, the window size for the next auctionMt+1

will be updated as

Lt+1 =

{
max{Lmin, Lt − 1}, if λH < α;

min{Lmax, Lt + 1}, if λH > β,
(15)

where α and β are moving thresholds.

D. Clearing Price Calculation

In the auction, the clearing price is calculated based on
critical average per-unit bid.

Definition 6 (Critical Average Per-unit Bid): The critical
average per-unit bid π?i for buyer i is defined as the minimum
value that her average per-unit bid πi must exceed to win her
request in the cloud resource auction.

According to the definition, we note that: (1) For each buyer
i, if πi > π?i , i will be ultimately selected as a winner;
otherwise, she will lose; (2) π?i is determined by θ̂−i, and
thus independent from i’s declared request θ̂i.

In the auction, each buyer i’s critical average per-unit bid
π?i is determined when she is about to depart from the cloud
system, i.e., either she finishes running her job, or she is
excluded from Φ because of passed deadline. The auction
calculates π?i for each i ∈ N by the following procedures:
1) Construct a request set of θ̂ti = (âti, ĥi, d̂

t
i, r̂i, v̂i), ∀t ∈

[âi, d̂i − ĥi], where dti = ati + hi.
2) Suppose buyer i declares her request as θ̂ti , which means

her arrival time is ati, and her request should be accepted
or refused immediately due to dti = ati+hi. Since we have
already had all historical information by time slot d̂i+1, we
can recover the entire allocation process and replay M′t.

3) We calculate πt?i that is buyer i’s critical average per-
unit bid, supposing θ̂ti is her declared request. πt?i can be
calculated by rerunning Algorithm 1 inM′t, until θ̂ti cannot
be satisfied. The threshold critical average per-unit bid is
then determined as πt?i .

4) We finally calculate buyer i’s critical average per-unit bid
π?i as π?i = min{πt?i |t ∈ [âi, d̂i − ĥi]}.

Since the size of set θ̂ti is d̂i − ĥi − âi + 1, the entire process
can be completed in polynomial time.

For any winning buyer i ∈ W , given her critical average
per-unit bid π?i , her clearing prices pi is calculated as

pi = π?i × ĥi ×A(r̂i) (16)

V. ANALYSIS

In this section, we prove that our cloud resource auction is
strategy-proof and achieves a nontrivial competitive ratio.

A. Strategy-proofness

Individual rationality
Theorem 1: The auction achieves individual rationality.

Proof: Suppose each truthful winning buyer i ∈ W is
determined in Mt, i.e., i ∈ Wt. According to the procedures
of clearing price calculation, we have πt?i ≤ πi, because
otherwise, i cannot win in Mt. Since π?i = min{πt?i |t ∈
[âi, d̂i − ĥi]}, we have π?i ≤ πi. Hence, we can obtain that

ui(F(θi, ˆθ−i), θi) = vi − pi
= πihiA(ri)− π?hiA(ri)

= (πi − π?)hiA(ri) ≥ 0

We can see that for any winning user, her utility will be
no less that 0. By not participating in the cloud resource
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auction, a buyer cannot win any resources, and her utility is
0. So participating is always not worse than staying outside.
Therefore, the auction satisfies individual rationality.
Incentive compatibility

Lemma 1: If ∀i ∈ N is selected as a winner determined
in Mt, t ∈ T , i.e., i ∈ Wt, the window size Lt is calculated
independently from her request θ̂i.

Proof: Assume by contradiction that ∃i ∈ N and ∃t ∈ T ,
such that i ∈ Wt and L′k 6= Lk is caused by that buyer i
declares an untruthful request θ̂i = θ̂′i 6= θ̂i. Then, according
to the window size calculation by equations (14) and (15),
buyer i must be selected as a winner in Mk, k < t, i.e.,
i ∈Wk, contradicting the assumption of i ∈Wt.

Lemma 2: The following inequality holds for all i ∈ N , θi,
ˆθ−i: ∀âi = a′i > ai, d̂i = d′i < di,

ui(F((ai, hi, di, ri, vi), ˆθ−i), θi) ≥
ui(F((âi, hi, d̂i, ri, vi), ˆθ−i), θi).

Proof: According to the procedures of clearing price
calculation, we have π

′?
i = min{πt?i |t ∈ [a′i, d

′
i − hi]} and

π?i = min{πt?i |t ∈ [ai, di − hi]}. Since a′i > ai and d′i < di,
we have {πt?i |t ∈ [a′i, d

′
i − hi]} ⊂ {πt?i |t ∈ [ai, di − hi]}, and

thus π
′?
i ≥ π?i . Now we distinguish three cases:

Case 1: Buyer i will not be selected as a winner by declaring
whether θ̂i = θi = (ai, hi, di, ri, vi) or θ̂i = θ′i =
(a′i, hi, d

′
i, ri, vi). In this case, the inequality trivially

holds, because her utilities are both 0.
Case 2: Buyer i will be selected as a winner by declaring

θ̂i = θi = (ai, hi, di, ri, vi), but will not by θ̂i =
θ′i = (a′i, hi, d

′
i, ri, vi). Since we have proved that the

auction satisfies individual rationality, in this case, the
inequality also trivially holds.

Case 3: Buyer i will be selected as a winner by declaring
whether θ̂i = θi = (ai, hi, di, ri, vi) or θ̂i = θ′i =
(a′i, hi, d

′
i, ri, vi). In this case, we can obtain that

ui(F(θi, ˆθ−i), θi)− ui(F(θ′i,
ˆθ−i), θi)

= π
′?
i hiA(ri)− π?i hiA(ri) ≥ 0

Therefore, we complete this proof.
Lemma 3: The following inequality holds for all i ∈ N , θi,

ˆθ−i: ∀âi = a′i > ai, d̂i = d′i < di, ĥi = h′i 6= hi, r̂i = r′i 6= ri,

ui(F((âi, hi, d̂i, ri, vi), ˆθ−i), θi) ≥
ui(F((âi, ĥi, d̂i, r̂i, vi), ˆθ−i), θi).

Proof: According to the procedures of clearing price
calculation, we have ui(F((âi, hi, d̂i, ri, vi), ˆθ−i), θi) ≥ 0.
If buyer i declares ĥi and r̂i, such that the resource
demand and running duration cannot be satisfied, then
ui(F((âi, ĥi, d̂i, r̂i, vi), ˆθ−i), θi) = 0, because her job cannot
complete at all. Therefore, we only consider that buyer i
declares h′i and r′i, which results in higher demand than actual
need. We denote π

′?
i = min{π′t?

i |t ∈ [a′i, d
′
i − hi]} as buyer

i’s critical average per-unit bid when declaring θ̂i = θ′i =
(a′i, hi, d

′
i, ri, vi), and π

′′?
i = min{π′′t?

i |t ∈ [a′i, d
′
i − h′i]} as

when declaring θ̂i = θ′′i = (a′i, h
′
i, d
′
i, r
′
i, vi). Since h′i > hi

and r′i requires more resources that ri, we have π
′t?
i ≤ π

′′t?
i ,

t ∈ [a′i, d
′
i − h′i]. Hence, we have π

′?
i ≤ π

′′?
i . Now we we

distinguish three cases:
Case 1: Buyer i will not be selected as a winner by declaring

whether θ̂i = θ′i or θ̂i = θ′′i . In this case, the
inequality trivially holds, because her utilities are both
0.

Case 2: Buyer i will be selected as a winner by declaring θ̂i =
θ′i, but will not by θ̂i = θ′′i . Since ui(F(θ′i,

ˆθ−i), θi) ≥
0, in this case, the inequality also trivially holds.

Case 3: Buyer i will be selected as a winner by declaring
whether θ̂i = θ′i or θ̂i = θ′′i . In this case, we can
obtain that

ui(F(θ′i,
ˆθ−i), θi)− ui(F(θ′′i ,

ˆθ−i), θi)

= π
′′?
i hiA(ri)− π

′?
i hiA(ri) ≥ 0

Therefore, we complete this proof.
Lemma 4: The following inequality holds for all i ∈ N , θi,

ˆθ−i: ∀âi = a′i > ai, d̂i = d′i < di, ĥi = h′i 6= hi, r̂i = r′i 6= ri,
v̂i = v′i 6= vi,

ui(F((âi, ĥi, d̂i, r̂i, vi), ˆθ−i), θi) ≥
ui(F((âi, ĥi, d̂i, r̂i, v̂i), ˆθ−i), θi).

Proof: We denote π
′′?
i = min{π′′t?

i |t ∈ [a′i, d
′
i − h′i]}

as buyer i’s critical average per-unit bid when declaring θ̂i =
θ′′i = (a′i, h

′
i, d
′
i, r
′
i, vi), and π

′′′?
i = min{π′′′t?

i |t ∈ [a′i, d
′
i −

h′i]} as when declaring θ̂i = θ′′′i = (a′i, h
′
i, d
′
i, r
′
i, v
′
i). Now we

we distinguish four cases:
Case 1: Buyer i will not win by declaring whether θ̂i = θ′′i or

θ̂i = θ′′′i . In this case, the inequality trivially holds.
Case 2: Buyer i will not win by declaring θ̂i = θ′′i , but will

win by θ̂i = θ′′′i . Suppose by declaring θ̂i = θ′′′i ,
buyer i will win in Mt, ∃t ∈ [a′i, d

′
i − h′i]. Then, we

must have v̂i > vi and π′′′i ≥ π
′′′t?
i = π

′′t?
i ≥ π′′i .

Hence, we have

ui(F(θ′′′i ,
ˆθ−i), θi) = πihiA(ri)− π

′′′t?
i h′iA(r′i)

≤ πihiA(ri)− π
′′

i h
′
iA(r′i)

≤ πih
′
iA(r′i)− πih′iA(r′i) = 0

Case 3: Buyer i will win by declaring θ̂i = θ′′i , but will not
win by θ̂i = θ′′′i . Suppose by declaring θ̂i = θ′′i , buyer
i will win in Mt, ∃t ∈ [a′i, d

′
i − h′i].

ui(F(θ′′i ,
ˆθ−i), θi) = vi − π

′′t?
i h′iA(r′i)

= (h′iA(r′i))(π
′′

i − π
′′t?
i ) ≥ 0

Case 4: Buyer i will win by declaring θ̂i = θ′′i , and will also
win by θ̂i = θ′′′i . In this case, we must have π

′′?
i =

π
′′′?
i . Hence, we have

ui(F(θ′′i ,
ˆθ−i), θi) = vi − π

′′t?
i h′iA(r′i)

= vi − π
′′′t?
i h′iA(r′i)

= ui(F(θ′′′i ,
ˆθ−i), θi)
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Therefore, we complete this proof.
Theorem 2: The auction achieves Incentive compatibility.

Proof: Combining Lemma 2, 3, and 4, we have that the
following inequality holds for all i ∈ N , θi, ˆθ−i: ∀âi ≥ ai,
d̂i ≤ di, ĥi, r̂i, v̂i,

ui(F((ai, hi, di, ri, vi), ˆθ−i), θi) ≥
ui(F((âi, ĥi, d̂i, r̂i, v̂i), ˆθ−i), θi).

Therefore, for any buyer i ∈ N , her best strategy is to simply
declare her truthful requests, i.e., θ̂i = θi.

Theorem 3: Combining theorem 1 and 2, the auction
achieves both individual rationality and incentive compatibil-
ity, and therefore achieves strategy-proofness.

B. Competitive Ratio

Theorem 4: The auction achieves a competitive ratio of
πmax

πmin
ηhmaxρ, where η = rmaxhmax maxx∈[M ]

∑
k∈[C]m

k
x

and ρ = max∀i,j∈[M ]A(mi)/A(mj).
Proof: We assign each unit of resources with a different

label, and use cx,y , x ∈ [C], y ∈ [1, cx] to denote the yth

unit of type-i resource. Since the cloud system is operated
in a time-slotted fashion, we further use ctxy , x ∈ [C], y ∈
[1, cx], t ∈ T to denote the resource slot of the yth unit of type-
x resource in time slot t. Hence, for each winning buyer i ∈
W , her resource assignment can be denoted as a set of resource
slots Ωi = {ctxy|

∑
ctxy =

∑
k∈[M ] r

k
im

x
k,∀x ∈ [C],∀t ∈

[si, si + hi)}. We use WOPT to denote the set of winning
user in the optimal solution, and similarly use WOUR to denote
the set of winning users in our auction. Let ΩOPT = {Ωi|i ∈
WOPT } represent the set of winning users’ assignments in the
optimal solution, and similarly let ΩOUR = {Ωi|i ∈ WOUR}
represent the set of winning users’ assignments in the optimal
solution.

We claim that ∀Ωi ∈ (ΩOPT − ΩOUR), ∃Ωj ∈ (ΩOUR −
ΩOPT ) denoted by Ωij s.t. ∃ctxy ∈ (Ωi ∩ Ωj). Assume by
contradiction that ∃Ωi ∈ (ΩOPT − ΩOUR), ∀Ωj ∈ (ΩOUR −
ΩOPT ), s.t. (Ωi∩Ωj) = ∅. Since Ωi does not conflict with each
scheduled request in ΩOUR, Ωi must be a feasible resource
assignment for i. Consequently, i must be a winner in OUR,
contradicting the assumption. Now we can see that for each
Ωi ∈ ΩOPT , there must exist Ωij ∈ ΩOUR. Since |Ωi| ≤ η =
rmaxhmax maxx∈[M ]

∑
k∈[C]m

k
x, there are at most η number

of Ωi ∈ ΩOPT mapped to each Ωj ∈ ΩOUR. Hence, for each
vj and all corresponding vi, we have

η
vj

hjA(rj)
· πmax
πmin

≥
∑ vi

hiA(ri)
.

We use ρ to denote max
∀i,j∈[M ]

A(mi)/A(mj), then we have

η
πmax
πmin

hmaxρvj ≥
∑

vi.

Since this holds for each vj ,Ωj ∈ ΩOUR, our proof completes.

VI. PERFORMANCE

A. Methodology

We implement our auction design and evaluate its perfor-
mance. In our simulations, we consider a the cloud system
which contains 200 units of CPU, 800 units of RAM, and
1600 units of Disk. As shown in table III, the cloud system
provides 5 types of VMs for various processing requirements.
Each time slot is 10min, and the cloud system runs 1 week,
i.e., spanning 6 ∗ 24 ∗ 7 time slots.

TABLE III
VM TYPES

VM CPU RAM Disk
v.s small 1 4 8
v.c computation-intensive 2 4 8
v.r memory-intensive 1 8 8
v.d storage-intensive 1 4 16
v.l large 2 8 16

We simulate the daily usage pattern [11] by varying the
number of users arriving in the system in different time.
Specifically, the number of users arriving within in each hour t
is determined by Q(t) = (x+xysin(t· π12 ))ϕ(t). x controls the
average number of users, and we choose various user densities
in our simulation; y contols the temporal variance, reflecting
the daily usage pattern. According to [11], the peak-mean-
ratio is about 1.3, so we set y = 0.3; to reflect the dynamics,
we set ϕ(t) ∈ [0.95, 1.05]. Each user can submit her request
of no more than 3 VM instances, and each resource requests
is randomly selected from 10 minutes to 2 hours. The other
parameters are set as: Lmin = 18, Lmax = 36, γ = 1.05,
α = 0.2, and β = 0.5.

Since most existing designs, e.g., [12]–[14], [17], do not
consider request deadline, we select first-arrive-first-serve
(fafs) as the benchmark, which is similar to COCA in [16].
We compare the performance of our proposed auction with the
benchmark in terms of social welfare and request completion
ratio. Each simulation is run 100 times, the result is averaged.

B. Performance on social welfare

In this set of our simulations, we compare the social welfare
of our auction with fafs under various average number of users
arriving per hour.

Figure 4 shows the ratio of social welfare of our auction to
fafs. We see that when the average number of users arriving
per hour is small, our auction can achieve nearly the same
social welfare as fafs. When more users arrives, our auction
can achieve better social welfare than fafs, and the ratio of
social welfare of our auction to fafs increases as user number
increases. Under the highest user density in our simulation,
i.e., 800 users arriving in the system on average, our auction
can improve social welfare by more than 35%.

C. Performance on completion ratio

In this set of our simulations, we compare the request
completion ratio of our auction with fafs under various average
number of users arriving per hour.
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Fig. 4. An illustrative example to show the efficacy of deadline-awareness.
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Fig. 5. An illustrative example to show the efficacy of deadline-awareness.

Figure 5 shows the comparison of request completion ratio
between our auction and fafs. We see that as the average
number of users increases, the ratio decreases due to the
limited resources. It is also clear that our auction and fafs
can always satisfy almost the same number of requests under
various user density.

Overall, we can see that with various average number of
users arriving in the system per hour, our auction outperforms
fafs on social welfare, and they both satisfy almost the same
number of requests. Therefore, we conclude that compared
with fafs, our cloud resource auction can improve social
welfare without any loss on request completion.

VII. RELATED WORK

Recently, cloud resource auction design has been attracting
substantial research interests. A number of elegant mecha-
nisms and strategies have been proposed to study this problem
from various perspectives. Some of these works are focused
on single round cloud resource auction design. For example,
Wang et al. [13] proposed a cloud computing resource auction
that is computationally efficient and collusion resistant. In
[17], Zhang et al. designed a truthful auction using the LP
decomposition for dynamic VM provisioning. Meanwhile, sev-
eral online cloud resource auction mechanisms were proposed.
In [16], Zhang et al. designed a bidding language to capture
user demand characteristics and applied to a cloud resource

auction design. Wang et al. [14] proposed an online auction for
cloud markets, achieving near-optimal allocation capacity. Shi
et al. [12] stepped forward and proposed an online auction for
cloud resource provisioning by using a primal-dual algorithm
to decompose the long-term optimization into independent
one-shot optimization problems.

Another category of related work is online auction mech-
anism design. Lavi and Nisan [5] initiated the study of
online auction in the domain of computer science. Parkes et
al. [9] analyzed VCG-based online mechanism with Markov
decision process. Porter [10] studied mechanism design for
online real-time jobs scheduling. Wu et al. [15] studied the
problem of online auction design with time discounting values.
However, none of these designs fully supports deadline-aware
heterogeneous request, and thus can be directly applied to
solving the problem considered herein.

VIII. CONCLUSION

In this paper, we have modeled the problem of deadline-
aware cloud resource allocation as an online combinatorial
auction, and proposed a strategy-proof and approximately
efficient cloud resource auction. We have implemented our
auction and performed extensive evaluations. Our evaluation
results verify the efficacy of our design, and show that
compared with the benchmark of the first-arrival-first-serve
scheme, our auction can achieve better performance on social
welfare without the loss on request completion.
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