
0018-9162/99/$10.00 © 1999 IEEE44 Computer

H
igh-speed, wide-area networks have made it
both possible and desirable to interconnect
geographically distributed applications that
control distributed collections of scientific
data, remote scientific instruments, and high-

performance computer systems. Such an application
might, for example, control a remote radio telescope,
transmit raw data from the telescope site to a distrib-
uted data archive, and concurrently convolve the data
to create images for real-time visualization. Develop-
ing just such a distributed application infrastructure
is the goal of our partners in the National Computa-
tional Science Alliance, one of the NSF Partnerships
for an Advanced Computational Infrastructure.

Although interconnecting these applications enables
geographically distributed science and engineering
teams to collaborate in new ways, the resultant dis-
tributed computations pose significant performance
analysis and optimization challenges. First, the exe-
cution environments of geographically distributed
applications are far less deterministic than those of
locally distributed, parallel applications.1 Network
bandwidths and latencies, computing resources, and
available data repositories can vary from one execu-
tion to another, and even during a single execution.
Consequently, identifying and correcting performance
bottlenecks exposed during one execution may not
benefit later executions.

Second, distributed applications are highly complex.
Application components execute atop disparate sys-

tem software and hardware. Real-time instruments
often impose scheduling and access constraints.
Accessing data repositories sometimes necessitates
data translation for correlation with experimental or
computational data. Finally, enabling effective remote
interaction and visualization necessitates quality-of-
service (QoS) guarantees. Incorporating QoS into these
hardware and software systems further increases their
complexity.

Historically, performance analysis has focused on
monolithic applications executing on large, stand-
alone, parallel systems. In such a domain, measure-
ment, postmortem analysis, and code optimization
suffice to eliminate performance bottlenecks and opti-
mize applications. Most existing performance analy-
sis systems—for example, SvPablo,2 Medea,3 and
Paragraph4—use only postmortem analysis. To tune
the emerging distributed applications, however, a new
generation of online performance measurement and
optimization tools must adapt application behavior
dynamically as resource availability changes.

In addition to providing real-time adaptive control,
new performance tools must gather data from multi-
ple sources and software levels (application, library,
system, and network). Furthermore, these tools must
enable geographically dispersed teams to collaborate
in identifying and correcting performance problems.
This capability requires support of distributed visual-
ization and control, as well as support of both syn-
chronous and asynchronous collaboration.

The Virtue prototype exploits human sensory capabilities to help
performance analysts explore and optimize large-scale, multidisciplinary
applications. The visualization environment lets collaborators interact
with executing software, tuning its behavior to meet performance goals.

Cover Feature

Virtue: Performance
Visualization of
Parallel and
Distributed
Applications

Eric Shaffer
Daniel A.
Reed
Shannon
Whitmore
Benjamin
Schaeffer
University of
Illinois at
Urbana-
Champaign

Co
ve

r F
ea

tu
re

Distributed visualization, data mining, and analysis
tools allow scientists to collaboratively analyze and
understand complex phenomena. Likewise, real-time
performance measurement and immersive performance
display systems—that is, systems providing large stereo-
scopic displays of complex data—enable collaborating
groups to interact with executing software, tuning its
behavior to meet research and performance goals.

To meet these needs, we designed Virtue, a proto-
type system that integrates collaborative, immersive
performance visualization with real-time performance
measurement and adaptive control of applications on
computational grids. The system combines the SvPablo
instrumentation system, the Autopilot real-time adap-
tive-control toolkit, and the Virtue virtual environment
for performance analysis. These tools enable physically
distributed users to explore and steer the behavior of
complex software in real time and to analyze and opti-
mize distributed-application dynamics.

PERFORMANCE MEASUREMENT
AND DISTRIBUTED CONTROL

To optimize distributed applications, performance
measurement software must capture data from mul-
tiple sites, a variety of hardware and software plat-
forms, and application software components in a
variety of languages. Complementing measurement,
distributed control mechanisms should allow users or
control software to modify runtime parameters or
resource allocation during the application’s execution.

Performance measurement
As Figure 1 shows, Virtue relies on the Autopilot

toolkit2,5 for distributed measurement of executing
software components. Autopilot is an extension of the
Globus computational grid system,6 which provides
a shared address space across processes, systems, and
networks. Globus also supports message-based dis-
tributed-application development and resource acqui-
sition. Using Globus services, Autopilot defines a set
of software sensors and actuators for instrumenting
application code and controlling code behavior.

The Autopilot sensors consist of low-overhead rou-
tines designed to capture real-time performance data
from distributed software components. User-defined
functions can extend the sensors to process raw perfor-
mance data before transmission—computing, for exam-
ple, a profile from event-trace data. To minimize the
complexity of sensor specification and configuration,
Autopilot relies on the SvPablo system for sensor inser-
tion in distributed-application source code. SvPablo
parses the code and identifies all instrumentable
regions—defined as the outer loops of loop nests—and
all procedure calls. Users can instrument code interac-
tively, via the SvPablo graphical user interface, or auto-
matically, using parser command line options. In

addition to generating instrumented source code,
SvPablo generates static call graphs for later visualiza-
tion.

To complement application data, we also created a
modified Traceroute program that uses Autopilot sen-
sors to report network latency and bandwidth data. All
these data, ranging from SvPablo application instru-
mentation through network performance metrics, are
transmitted to Virtue via the Autopilot sensors.

Distributed control
In addition to data capture, Autopilot supports

adaptive control of remote applications and systems.
Software actuators, inserted in application code or
embedded in runtime libraries, provide mechanisms
for controlling functions in software modules. At the
application level, actuators can change variable values
or choose among algorithms for a particular task.
Similarly, runtime system actuators can change
resource management policies and their parameters
(such as file system prefetching or caching policies).

Together, the Autopilot sensors and actuators pro-
vide the performance data needed to visualize soft-
ware structure and dynamics and the mechanism to
modify those dynamics. Virtue imports sensor data
for real-time, immersive visualization and provides
direct manipulation tools for interacting with the
Autopilot actuators. This interactive, closed loop
allows users to modify software behavior while
immersed in the virtual environment.

VISUALIZATION SYSTEM INFRASTRUCTURE
Although the scientific community has widely

accepted immersive virtual environments for the
analysis of complex scientific data, simple static and
dynamic workstation graphics remain the de facto

December 1999 45

Virtue
immersive

visualization
system

SvPablo
instrumentation

toolkit

Autopilot sensor

Autopilot actuator

Instrumented
application

Performance data

Real-time steering

Instrumentation
insertion

Figure 1. Distributed performance instrumentation and control using the Autopilot
toolkit, an extension of the Globus computational grid system.

46 Computer

standard for performance analysis. Today’s distrib-
uted parallel systems collectively contain thousands
of processors connected by high-bandwidth networks,
and they must access distributed secondary and ter-
tiary storage systems. To effectively visualize and opti-
mize the behavior of these systems, performance
analysts need performance visualization systems that
more fully exploit human sensory capabilities.

Obviously, the number of factors that can affect per-
formance has increased. Moreover, effective perfor-
mance tuning of distributed applications often
requires cooperative exploration by a group of phys-
ically dispersed experts in domains such as network-
ing, storage, scheduling, and architecture. Their
analysis tools must reflect the collaborative, often
asynchronous, nature of their work. To address these
needs, we drew on insights from computer-supported
cooperative work and virtual environments.

Software
Performance data visualization shares many fea-

tures with information visualization—many data
types and objects, such as software modules and
processor utilizations, are abstract and thus lack
default physical representation. Supported by appro-
priate mappings of data to representations, immersive
displays can make the abstract concrete and provide
intuitive interfaces that allow the same direct manip-
ulation of objects that people perform in the physical
world. With such an interface, for example, the user
could increase the size of a file cache by “grabbing”
and stretching a virtual box that represents a cache.

Clearly, finding intuitive mappings of abstract per-
formance data to physical representations is critical;
without appropriate mappings, displays are little more
than animated light shows. As yet, we understand

intuitive mappings only poorly, and it is likely that the
best mappings are domain dependent. Our previous
work on building performance environments2,5,7

taught us that systems designed to visualize very spe-
cific data types have limited life spans and utility.
Therefore, Virtue provides a language for quickly
changing and exploring alternate data mappings.

At its core, Virtue is a general-purpose toolkit for
visualizing common computer system and communi-
cation network components as hierarchical, three-
dimensional graphs. It provides a rich graph
description language for mapping data to graph attrib-
utes, including edge and vertex size, shape, color,
translucency, position, and sound. The language
includes powerful mechanisms for manipulating
graphs and annotating graph components with audio
and video notes. We based Virtue’s graph description
language on our extensible Self-Defining Data For-
mat.2,5 SDDF separates data structure from semantics,
enabling users to quickly associate a new graph layout
or data mapping by changing only a few lines of the
SDDF description. Configuration files allow users to
explore alternate mappings by quickly remapping
variables to new visual or sonic attributes.

Because our SvPablo instrumentation system also
uses SDDF as its data representation, integrating
graph descriptions with performance-data mappings
is straightforward. For example, by mapping proce-
dure invocation counts and execution times to vertex
size and color, users can render the call graphs created
by SvPablo instrumentation as three-dimensional
digraphs. In addition to using SDDF for performance-
data representation, we also use it as Virtue’s control
language, to specify control mappings and virtual
tools for data manipulation.

Finally, to support distributed collaboration, Virtue
integrates videoconferencing for synchronous inter-
action, as well as capture and replay of multimedia
annotations for asynchronous interaction. Modified
versions of Multicast Backbone (Mbone) videocon-
ferencing tools connect an annotation server and
remote collaborators, exporting digital video of Virtue
imagery and enabling collaboration. Moreover, Java
tools for desktop and handheld computers allow desk-
top and mobile collaborators to control graph displays
and examine the associated data.

Figure 2 shows Virtue’s overall software architecture.
The Virtue kernel consists of the data manager, which
accepts SDDF data and control descriptions, and the
display manager, which coordinates user interactions
and renders the visualization. For collaboration and
annotation, the multimedia toolkit coordinates multi-
cast audio and video and user-tracking cameras. The
National Center for Supercomputing Applications
(NCSA) Vanilla Sound Server (VSS) supports sound
spatialization, sonification, and generation of audio

Performance
data Virtue

data
manager

SDDF
library

Virtue
display

manager

OpenGL

CAVE
library

VSS audio
library

CyberGlove
library

Multimedia
toolkit

User
commands

Tracking
data Immersive

display

3D audio

Haptics

Streaming
video

Data for visualization

Figure 2. Virtue’s
software archi-
tecture. Key compo-
nents include the
SDDF data and con-
trol descriptions, the
display manager, and
the multimedia
toolkit.

cues. The VRCO CAVE library and OpenGL provide
graphical support, and the CyberGlove library enables
user input and haptic feedback via a Virtual
Technologies CyberGlove. Finally, commercial speech
recognition software enables voice commands.

Hardware
Itself a distributed system, Virtue consists of com-

ponents that execute on a variety of PCs and render-
ing engines. As shown in Figure 3, the central
component is an SGI platform. Currently, we use an
Onyx2 with Infinite Reality graphics. This machine
drives an immersive display device, such as CAVE or
ImmersaDesk, for stereographic viewing. A tracking
system, such as Ascension Technologies’ Flock of
Birds, complements the display device and reports user
position and orientation to the tracking camera.

Users manipulate displayed objects with a tracked
wand (3D mouse) or a Virtual Technologies Cyber-
Glove, which provides data for hand visualization and
tactile feedback from microvibrators. Users can issue
commands with the wand or the data glove via a
glyph-based drawing interface. Virtue includes a
microphone headset to support voice commands.

To provide sound cues for events such as object
intersection and to enable mapping of time-varying
data to sonic attributes, Virtue provides spatialized
audio, creating the illusion that sounds emanate from
specified locations. The VSS uses position and orien-
tation data to convolve the audio.

For synchronous collaboration, cameras on track-
ing platforms follow user movements and transmit the
resulting video and associated audio to remote sites
over the Mbone. Our multimedia tools manage incom-
ing and outgoing Mbone video and audio streams, as
well as the recording and replaying of these streams
for asynchronous collaboration via annotations.

HIERARCHICAL GRAPHS AND
VISUALIZATION METAPHORS

Each graph displayed by Virtue has an associated
graph layout. These include

• explicit layouts, which use mapped data values
to place vertices;

• ball-and-spring layouts, which use edge data values
as spring tensions for vertex energy minimization;

• cone trees, which arrange the vertices in a 3D
hierarchical structure; and

• application-specific layouts, which place graph
vertices and edges according to a particular visu-
alization, or display, metaphor.

Application-specific layouts
For visualizing distributed and parallel application

performance, we have found layouts based on the fol-
lowing display metaphors particularly useful: geo-
graphic displays of network activity, time-tunnel
displays of parallel process interactions, and call
graphs of source code structure. These layouts reflect
the hierarchy of distributed computations, ranging
from wide-area communication through execution
dynamics within single software modules.

Distributed applications depend on adequate net-
work bandwidth and acceptable latency for inter-
connection of remote resources. In geographic
network displays, the position of graph vertices rep-
resents the latitude and longitude of resource sites,
vertex and edge attributes represent important link
characteristics such as latency and bandwidth, and
texture-mapped backgrounds provide context.

Virtue supports spherical backgrounds for global
networks and planar backgrounds for local networks.
For example, Figure 4 shows a geographic display of
a wide-area network.

December 1999 47

Video camera and
pan-tilt platform

Pan-tilt camera
controller

SGI platform

Sun or SGI
platform

Multimedia
toolbox

Sun, SGI, or
Windows NT

platform

VSS

Windows NT
platform

Speech
recognition

software

CAVE

SGI platform

Multimedia tools:
 vvic (video in/out)

export (out)

Virtue

3D mouse or
CyberGlove

Virtual
reality displayTracking system

Figure 3. Virtue’s
hardware compo-
nents, which center
around an SGI
platform.

48 Computer

For understanding interactions among the tasks and
threads of a parallel computation within a single
machine, such as the locally parallel component of a
geographic computation, we developed a system-level
display known as a time tunnel.7 The time tunnel con-
sists of a cylindrical array of time lines, each line cor-
responding to the temporal sequence of behaviors in
the associated task, with color indicating the activity

type. Chords through the interior of the cylinder con-
nect the time lines of interacting tasks. Figure 5 shows
the interior of a time tunnel.

Finally, the procedure call graph is a familiar
metaphor that pictures code blocks as vertices, with
links indicating the static call hierarchy. As Figure 6
shows, Virtue uses a hierarchical layout of the vertices
in three dimensions, with a variety of data mappings
to represent procedure metrics. Finally, animation can
show the evolutionary time pattern of invocation or
metric variation.

Graph hierarchies
Virtue can also nest arbitrary graphs, each using a

different display metaphor and layout. To nest graphs,
users attach any graph to a vertex of any other, with
each graph supporting separate mappings of data to
graph attributes, including size, shape, and color. This
nesting can extend to an arbitrary number of levels,
and interactive controls can be used to expand and
contract nested graphs.

An example of nesting is the creation of hierarchi-
cal views of geographic computations. Beginning with
a geographic visualization of network traffic, the user
selects a site and “drills down” to a time-tunnel view
of the parallel computation at that site. Selecting a spe-
cific task yields a call graph for the executing code in
that task. The user can expand multiple elements of
the graph hierarchy at separate sites. In aggregate, this
feature allows performance analysts to conduct
“search-and-destroy” optimization, identifying prob-
lems and exposing more detail to correct their root
causes.

INTERACTIVE DATA EXPLORATION
AND ADAPTIVE CONTROL

Data visualization is only the first step to analysis,
understanding, and control. With a large data volume
such as that found in parallel and distributed appli-
cations, data visualization systems must also enable
interactive pruning of unnecessary or inappropriate
data. Moreover, these systems must facilitate com-
parison of alternate data representations to highlight
critical data. Finally, systems must enable remote steer-
ing of the hardware and software on the basis of
observed performance.

To aid data exploration and control, Virtue includes
a set of virtual tools for manipulating and interrogat-
ing visual data representations. We based many of
these, such as the generalized magnifying lens (Magic
Lens) shown in Figure 7, on the research experiences
and usability studies of other groups. When held over
an object in query mode, the Magic Lens reveals hid-
den text (labels of geographic sites, procedure names
in a call graph, or textual representations of numeri-
cal data). In data mode, it triggers an alternate map-

Figure 4. Wide-area
geographic display.
The link colors corre-
spond to network
latency.

Figure 5. Time-tun-
nel display that
shows the inter-
actions among tasks
and threads of a par-
allel computation.
The white and purple
chords show inter-
processor communi-
cation; yellow time
lines show task com-
putation.

Figure 6. Call-graph
display. The data
mappings represent
procedure metrics—
for example, vertex
color and size indi-
cate invocation count
and time spent by the
procedure. The text
labels indicate proce-
dure names.

ping of data to visual attributes, providing a different
view of the same data.

The second tool, a cutting plane, computes metrics
on the data values associated with bisected graph
edges. For example, with the cutting plane, the user
can bisect a set of links in a network visualization and
compute either the maximum latency or the band-
width across the links. Figure 8 shows such an action.

Complementing Virtue’s virtual tool set, a set of
direct manipulation controls lets users change appli-
cation or system behavior. Within the virtual envi-
ronment, these controls take the form of three-dimen-
sional sliders. By coupling the sliders with Autopilot
actuators, Virtue translates slider manipulations to
changes in remote system or application policy. Using
these controls, an analyst can perform online steering
of an application.

COLLABORATIVE VISUALIZATION
Large-scale, geographically distributed applications

integrate a broad range of software components,
developed in a variety of languages and executing on
a diverse set of hardware and software platforms. By
their nature, they execute at multiple sites with possi-
ble bottlenecks at many levels. Moreover, developers
and performance analysts themselves frequently work
at distributed locations. Hence, a team of scientists
must often work with performance analysts across
both space and time. To promote information shar-
ing among these collaborators, Virtue includes multi-
media annotation mechanisms for asynchronous
collaboration and combines immersive visual display
with desktop and handheld mobile systems.

Because Virtue graphs are tangible objects, users
can annotate them in the same way they would anno-
tate a physical object—by attaching a note. Simply by
touching a Virtue object and issuing a voice command,
users can attach an audio and video annotation of
their insights about the displayed data. General obser-
vations about the visualization are suspended at the
user-specified location in the display.

Although seemingly simpler than multimedia
recording, textual annotations are poorly suited to vir-
tual environment displays—their low resolution
makes small windows of text illegible. Larger win-
dows obscure the visualization, making it difficult to
correlate the annotation with the display context.
Moreover, text annotation requires either an obtru-
sive text input device or highly accurate speech-to-text
translation.

To increase visual coherence, annotations that detail
observations about a specific graph vertex appear as
wireframe bounding boxes, as shown in Figure 6. The
wireframe indicates the presence of annotations while
minimizing visual obstruction. For general annota-
tions not attached to a specific graph object, Virtue

has more display flexibility. For example, we have
used spheres with texture-mapped images applied to
their surfaces to represent these annotations. The
images can provide the author context in the form of
a picture or a visual representation of the subject.

We based Virtue’s annotation system on modified
versions of the Mbone VIC and VAT multicast video-
conferencing tools. To record an annotation, a Virtue
user issues a voice command and begins speaking.
Tracking cameras center the speaker in their field of
view, and the videoconferencing tools generate files
that are stored in the annotation server’s database.
When a user opens an annotation, Virtue contacts this
server, which then multicasts the digital audio and
video files. Virtue then maps the received video to
floating windows in the display.

Virtue uses the same multicasting software to trans-
mit and receive live multicast audio and video streams.
This enables videoconferencing between the immer-
sive display and remote desktop and mobile devices. To
further strengthen the coupling of immersive displays
and remote systems, we also export Virtue’s graphical
displays via a separate multicast video stream.

December 1999 49

Figure 7. The Magic
Lens tool, which
operates in two
modes. Held over an
object in query mode,
it reveals hidden text;
in data mode, it trig-
gers an alternate
mapping of data to
visual attributes.

Figure 8. The cutting-
plane tool. The user
can bisect a set of net-
work-visualization
links and compute
either the maximum
latency or the band-
width across the links.
.

50 Computer

Although the desktop imagery has low resolu-
tion, it provides important context for collabo-
ration.

Visualization and discussion are only part of
the collaboration equation. To be equal partners,
remote collaborators must also be able to inter-
act with and control the visualization. Hence,
Virtue includes a Java-based system that allows
remote users to control aspects of the main dis-
play. It also allows them to locally display and
control remote software behavior via Java inter-
faces to Autopilot sensors and actuators.

EXPERIENCES WITH VIRTUE
The true test of any performance tool is its usefulness

in real applications. To evaluate Virtue’s effectiveness,
we instrumented a large, parallel application from the
Department of Energy’s Center for Simulation of
Advanced Rockets, a part of the Academic Strategic
Alliance Program. CSAR seeks to create and validate
a fully three-dimensional, integrated simulation of the
complex component interactions in solid rocket boost-
ers. Recent well-publicized and expensive miscarriages
of solid rocket boosters have generated great interest
in understanding their potential instabilities and fail-
ure modes. The multidisciplinary problem is highly
complex, and the associated simulation, written by a
variety of cooperating researchers, is dynamic and con-
tinually evolving.

A parallel code written in Fortran 90, the CSAR
application employs the Message-Passing Interface
(MPI). Currently, the code models the fluid flow, com-
bustion, and structure components of the space shut-
tle solid rocket booster (SRB); researchers continue to
add new, more complex models and components.
CSAR estimates that modeling the first 0.5 seconds of
SRB burn will require 200 hours on a 128-processor
SGI Origin 2000 supercomputer. The ultimate goal of
modeling the entire two minutes of SRB burn depends
on optimizing the code.

To analyze the CSAR application’s performance,
we created a real-time visualization detailing the code’s
execution on an SGI Origin 2000 at the NCSA. The
visualization consists of three levels. At the highest
level, shown in Figure 4, a geographic display captures
the logical connectivity of the wide-area network join-
ing several supercomputing sites and national labo-
ratories in the continental US. Our modified Trace
route program, augmented with Autopilot sensors,
captures latency data, which Virtue maps to link color.
Although the CSAR application currently executes on
only one parallel system at a time, this geographic
visualization allowed us to validate Virtue’s real-time
network traffic visualization capabilities.

At the midlevel of the display hierarchy, we repre-
sented processor activity and message-passing data

from the single-platform, parallel execution. We
instrumented the source code automatically via
SvPablo to capture procedure call patterns. We also
added Autopilot sensors to report entry and exit from
logical code regions and to capture MPI message-pass-
ing activity. By selecting the NCSA site on the geo-
graphic display, users can drill down to a time-tunnel
display of the Autopilot data. The color of each lateral
time line identifies the currently executing code region
(for example, fluid flow or structures) on each proces-
sor. In Figure 5, for example, the yellow time lines cor-
respond to execution of the structure solver, with MPI
reductions and sends and receives visible at the rear
of the tunnel. The chords connecting time lines across
the tunnel represent message-passing activity.

From a Virtue time-tunnel graph, a user can select
the time line corresponding to a specific processor and
drill down to display the associated call graph, as
shown in Figure 6. Here, the data mapping associates
vertex size with the number of times the correspond-
ing code has executed on the associated processor, and
it associates vertex color with the procedure’s inclu-
sive execution time.

As a complement to the real-time visualization, we
also created a postmortem visualization by recording
the Autopilot sensor data for replay. The postmortem
visualization allowed us to share the results with var-
ious CSAR application developers and obtain two
important insights. First, in both the real-time and post-
mortem visualizations, Virtue revealed major oppor-
tunities for optimizing the CSAR code’s initialization
phase. In the code’s current configuration, initializa-
tion requires the exchange of many small MPI mes-
sages among processors and consumes a substantial
portion of total execution time.

Second, we identified opportunities for dynamically
adjusting the convergence criteria and execution bal-
ance across the code’s fluid and structure components.
We believe this capability offers the greatest promise
for user-directed software tuning. By providing
Autopilot sensors and actuators for parameter mea-
surement and adjustment, Virtue will enable CSAR
application developers to interactively explore the
behavioral balance of code components.

In addition to suggesting possible application opti-
mization targets, we also gathered valuable qualita-
tive data on Virtue itself. First and foremost, the
visualization system’s graph-theoretical basis proved
malleable enough to be successfully applied to a com-
plex, multidisciplinary application, one of Virtue’s pri-
mary goals. Further, we learned that the success of a
large-scale visualization depends on virtual tools,
which provide an efficient mechanism for manipulat-
ing data and changing views. Indeed, we believe Virtue
needs a larger suite of even more powerful tools to
fully exploit its visualization capabilities.

Virtue includes a
Java-based system
that allows remote

users to control
aspects of the main

display.

A lthough we have validated our approach with
a large-scale application, much work remains.
First, we continue to test Virtue with distrib-

uted applications as part of the National Science
Foundation PACI (Partnership for Advanced
Computational Infrastructure) program and the
Department of Energy NGI (Next-Generation
Internet) and ASCI (Accelerated Strategic Computing
Initiative) programs. We are also developing more
sophisticated network performance displays and vir-
tual tools for exploring visualizations.

Using the rich set of network measurement data
from the Very High Performance Backbone Network
Service (vBNS), we are augmenting display metaphors
with new visual attributes to represent a greater range
of statistics. We are also developing a set of more pow-
erful, domain-specific virtual tools. These include a
critical-path finder, which will compute the limiting
set of tasks in a time-tunnel execution display, and a
statistical clusterer, which will identify the most rele-
vant performance metrics for display.

Finally, we plan to continue our investigation of col-
laborative techniques. To enhance distributed inter-
action, we are generating VRML (Virtual Reality
Modeling Language) snapshots of graph structures
for Web export. We are also exploring navigation
paths through annotation suites and implementing
“flight recorders” for capturing user navigation paths
through complex graphs. ❖

Acknowledgments
Ruth Aydt; Luiz DeRose, now at the IBM T.J.

Watson Research Center; Mario Pantano, now at
Anderson Consulting; Randy Ribler, now at Lynch-
burg College; and Ying Zhang all contributed to the
development of the Autopilot toolkit.

The work described here was supported in part by
the Defense Advanced Research Projects Agency
under contracts DABT63-94-C0049, F30602-96-C-
0161, DABT63-96-C-0027, and N66001-97-C-8532.
Support also came from the National Science
Foundation under grants CDA 94-01124 and ASC
97-20202 and the Department of Energy under con-
tracts B-341494, W-7405-ENG-48, and 1-B-333164.
The NSF PACI program provided additional support.

References
1. I. Foster and C. Kesselman, The Grid: Blueprint for a

New Computing Infrastructure, Morgan-Kaufmann,
San Francisco, 1999.

2. L. DeRose, Y. Zhang, and D. Reed, “SvPablo: A Multi-
Language Performance Analysis System,” Computer
Performance Evaluation Modeling Techniques and
Tools, Lecture Notes in Computer Science, Vol. 1,469,

R. Puigjaner, N. Savino, and B. Serra, eds., Springer-Ver-
lag, New York, 1998, pp. 352-355.

3. M. Calzarossa et al., “Medea: A Tool for Workload
Characterization of Parallel Systems,” IEEE Parallel
&Distributed Technology, Winter 1995, pp. 72-80.

4. M.T. Heath and J.A. Etheridge, “Visualizing the Per-
formance of Parallel Programs,” IEEE Software, Sept.
1991, pp. 29-39.

5. L. DeRose et al., “An Approach to Immersive Perfor-
mance Visualization of Parallel and Wide-Area Distrib-
uted Applications,” Proc. 8th IEEE Int’l Symp.
High-Performance Distributed Computing, IEEE CS
Press, Los Alamitos, Calif., 1999, pp. 247-254.

6. I. Foster and C. Kesselman, “Globus: A Metacomput-
ing Infrastructure Toolkit,” Int’l J. Supercomputer
Applications, Vol. 11, No. 2, 1997, pp. 115-118.

7. D. Reed et al., “Virtual Reality and Parallel Systems Per-
formance Analysis,” Computer, Nov. 1995, pp. 57-67.

Eric Shaffer is a research programmer in the Department
of Computer Science of the University of Illinois at
Urbana-Champaign. His research interests include com-
puter graphics, visualization, and scientific computing.
Shaffer has an MS in computer science from the Univer-
sity of Minnesota and a BS in mathematics and computer
science from the University of Illinois at Urbana-Cham-
paign. He is a member of the IEEE and the ACM.

Daniel A. Reed is a professor and head of the Depart-
ment of Computer Science of the University of Illinois
at Urbana-Champaign. His research interests include
parallel computing, experimental performance analy-
sis, and parallel input/output systems. Reed has a BS
in computer science from the University of Missouri
at Rolla and an MS and a PhD, also in computer sci-
ence, from Purdue University. He is a member of the
IEEE, the ACM, and the AAAS.

Shannon Whitmore is a research programmer in the
Department of Computer Science of the University of
Illinois at Urbana-Champaign. Her research interests
include real-time performance analysis and scientific
visualization. Whitmore has an MS in computer sci-
ence from Oregon State University and a BS in com-
puter science from Southern Oregon University.

Benjamin Schaeffer is a research programmer in the
Department of Computer Science of the University of
Illinois at Urbana-Champaign. His research interests
include physics simulations and scientific visualiza-
tion. Schaeffer has a PhD in mathematics from the
University of Illinois and a BS in mathematics from
the University of Chicago. He is a member of the
Association of Symbolic Logic.

Contact the authors at {shaffer1, reed, swhitmor,
schaeffr}@cs.uiuc.edu.

December 1999 51

