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Abstract—We have witnessed a dramatic increase in national
cyberinfrastructure resources to support data-driven research.
Orchestrating these resources to enable the creation of col-
laborative infrastructure capable of supporting data intensive
activities is challenging. In this work we present RADII, a
novel architecture and system that enables the provisioning and
configuration of collaborative infrastructure by orchestrating
data and infrastructure management in an integrated manner.
We also introduce a cross-layer data annotation mechanism
that together with Software-Defined-Networking (SDN) sup-
port allows the embedding of user-defined performance policies
into file metadata which are translated into executable optimal
network plans. We have deployed RADII on a worldwide
production testbed and demonstrated through experimentation
that RADII can improve network throughput of data transfers
by 28.2% as compared to conventional approaches.

Keywords-data-centric infrastructure; cyberinfrastructure;
ExoGENI; iRODS; SDN

I. INTRODUCTION

We have recently witnessed a dramatic increase in
national data services (NCBI [26]) along with national
funded initiatives (NSF BDHUB [19]) to foster the de-
velopment and sustainability of data-centric cyber com-
munities. Complementing this trend are the large number
of compute cyberinfrastructure efforts that seek to enable
the provisioning of virtual compute infrastructure tailored
to application needs (GENI [13]), compute platforms to
run scientific workloads (OSG [28]), open-Cloud platforms
(Cloudlab [30], Chameleon [5]) to enable the deployment
of private Clouds within public Clouds, high-performance-
compute (HPC) systems for supporting medium to large
scale jobs (COMET [10]), among others. All these efforts
have the potential of allowing scientists to run data-intensive
workloads at scales not possible before.

The main goal of such cyberinfrastructure resources is to
enable communities that support new models of data-driven
research and education [11]. To achieve this we need to
orchestrate the integration of these advanced technologies,
data and scientists into unified collaborative infrastructures
that scientists can use efficiently, with ease and with rea-
sonable levels of performance. In this work, a collaborative
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infrastructure consists of durable compute and storage re-
sources potentially spanning across multiple institutions and
sites to support all aspects of a data-driven collaboration. As
such, it must support a broad range of data activities tailored
to specific needs, from transferring input data sets hosted
in national data services, to analyzing intermediate results
in national high performance computing (HPC) machines
and sharing results in distributed data-sharing infrastructure.
We face multiple challenges to realize this vision. Firstly,
lack of dedicated network infrastructure between distributed
cyberinfrastructure resources constraint scientists to transfer
files over commodity Internet – a practice that results in long
transfer times and hinders scientific productivity. More so-
phisticated approaches based on regional network providers,
e.g., Internet2 [20] are possible but require the involvement
of IT staff and are time consuming. More importantly, these
approaches are fairly static and therefore fail to adapt to
the dynamic nature of scientific collaborations. Consider the
use case where network connectivity is required between
local resources at a new collaborating institution and an
existing collaborative infrastructure; this effort would de-
mand complex logistics between the IT staff. Secondly, data
management technologies that enable the sharing of data
across sites and institutions, such as integrated Rule Oriented
Data System (iRODS) [29] and Globus [14], are oblivious to
the physical infrastructure underneath. This limits the level
of control that scientists have on such environments and
the optimization opportunities in the overall system. Such
a design decision is typically made to hide the complexity
of the underlying systems, however, it also limits, as an
example, the scientists’ ability to control the placement of
data and the support for network-aware data replication.

We believe that the enabling of truly data-centric collab-
orations in the scientific community requires the design and
development of novel data-driven software infrastructure,
where the networking, storage, data and computing systems
function together as a unified infrastructure [32]. We note
that whereas there exists software solutions to manage and
control data (access and storage), such as iRODS, and the
network, such as Software-Defined-Networking (SDN), the
boundaries that currently exist between these domains pre-



vent the exercise of centralized control across these multiple
domains. In this work, we propose a novel architecture and
system named Resource Aware DatacentrIc Infrastructure
(RADII) that bridges this gap by allowing users to pro-
grammatically create durable collaborative virtual infras-
tructure to support data-centric collaborations through out
their entire life-cycle. We accomplish this by orchestrating
the provisioning of such infrastructure and configuration of
the data management plane to satisfy the requirements of sci-
entific collaborations, and by enabling fine-grained control
over data transfers driven by user-defined policies. RADII
offers a unique cross-layer data annotation mechanism that
allows users to encode security and performance policies
for each file into the file’s metadata. We rely on SDN to
translate these policies into network forwarding rules, which
ultimately optimize for user and system requirements. on the
importance of files while optimizing for network utilization.

In summary, this paper makes multiple contributions: (1)
A novel extensible service architecture that integrates data
and infrastructure management. (2) A novel approach based
on cross-layer data annotation that allow users to encode
performance and security policies in file metadata, which
are translated into data and network management opera-
tions. (3) An implementation of a system, named RADII,
that demonstrates the feasibility of the approach. RADII
is deployed on a production national testbed (ExoGENI)
consisting of 20 sites distributed worldwide and builds on
existing open source Open Resource Control Architecture
(ORCA) [6] and data (iRODS) management technologies.
All the source code of our project is available online at [1]
and a test prototype implementation is available at [2].

The rest of the paper is organized as follows. In Section II
we provide some background on the technologies that we
use to build RADII. We introduce iRODS, ExoGENI and
SDN in Section II. We describe the architecture that enables
the provisioning of collaborative infrastructure in detail in
Section III. Following, we outline our novel cross-layer data
annotation mechanism and its interaction with SDN to en-
able the deep integration of data and network management.
In Section V we perform experiments on a real production
testbed to demonstrate the effectiveness of our cross-layer
data annotation mechanisms and SDN to satisfy user-defined
performance on file transfers. In Section VI we discuss
some of the most relevant work related to ours. Finally, in
Section VII we discuss future directions.

II. BACKGROUND

In this section we describe three core technologies of
RADII. Our goal is to provide enough detail to help the
reader understand our approach to the best possible.

A. ExoGENI

The ExoGENI testbed consists of 20 worldwide dis-
tributed Cloud sites on campuses, linked with national
research networks through programmable exchange points.

Distributed resources are offered in connected topologies,
called slices, to form mutually isolated, networked virtual
infrastructures for solving specific problems. ExoGENI ob-
tains compute and storage from private Cloud sites at the
edge, and network resources from edge providers and na-
tional fabrics using VLAN-based switching and OpenFlow.
With ORCA, ExoGENI offers a powerful, unified hosting
platform for deeply networked, multi-domain, multi-site ap-
plications. ExoGENI is distinguished from other Cloud plat-
forms, e.g., AmazonEC2 [12] with the following advantages:
1) it is able to allocate bandwidth-provisioned, dedicated
layer-2 private networks between resources across sites; 2)
it enables modification to slices dynamically, allowing users
to modify resource capacities and networking topology of
the infrastructure; 3) it provides a programmatic interface
that uses Network-Descriptive-Language (NDL) to allow
the clean integration with applications. These features are
essential for RADII to enable the provisioning of durable
virtual infrastructure and couple infrastructure and data man-
agement. As such, ExoGENI is an exemplary of a worldwide
distributed and federated compute environment that with the
appropriate middleware software can address the challenges
discussed in Section I.

B. iRODS
iRODS federates distributed, heterogeneous data systems

into a single logical file system and grants data access
through a uniform client API. The core of iRODS is a rule
engine that supports sophisticated data management logic
and operations using data rules, including archive processes,
publication and dissemination processes, analysis, synthesis
and access processing. The programmability of the data
rules facilitates the integration of iRODS with advanced
management logic. In addition, iRODS owns a metadata
system that supports user-defined metadata. The adoption
of metadata in iRODS complements rule-oriented data man-
agement by enabling more flexible data rule enforcement. A
typical iRODS deployment consists of an iCAT server, which
stores system status and metadata, and a number of peer
resource servers, which maintains data files. Rule engines
run on resource servers to ensure rule enforcement. The
unique programmability and metadata support of iRODS
make it our best choice for integrating data and infrastructure
management in RADII.

C. SDN Network
In wide area network environments data transfers expe-

rience poor network performance caused by high latency,
packet loss and network congestion. Advanced networking
techniques [24] try to address the issues but are restricted
by the rigid architecture of traditional networks, where
routing algorithms are hardcoded and can only rely on
local information available on switches. These static routing
schemes are inefficient in reacting to frequent network state
changes therefore, they can seldom mitigate the impact that



high latency and packet loss has on applications. Moreover,
traditional networking techniques are application-oblivious
and therefore can’t optimize performance for application
requirements.

SDN addresses these challenges by enabling dynamic,
programmable network configuration tailored to service
needs SDN detaches the hardcoded control plane from the
network switches and uses controllers deployable on servers
to manage the network in a centralized manner. Within
the controllers, custom network planning algorithms can
be developed to support global network optimization. In
addition, the controllers can obtain application requirements
via its custom northbound API to drive network manage-
ment operations. The controller communicates with the
network switches using the OpenFlow [23] protocol via
its southbound API. An SDN network can be constructed
from virtual resources with VMs configured as software
switches [27] and controllers connected through dedicated
virtual network links. In view of all these qualities we
believe that SDN technologies present a unique opportunity
to resolve the performance issues impeding the adoption of
distributed cyberinfrastructure resources for supporting data-
driven collaborations.

III. RADII

RADII allows users to programmatically create durable
collaborative infrastructure to support data-centric collabo-
rations through out their life-cycle. Central to our approach
is the orchestration of the provisioning and configuration of
the virtual infrastructure and the data management plane in
an integrated fashion. In addition, RADII offers a unique
cross-layer data annotation mechanism that allow users
to encode security and performance policies in metadata
associated with files. Following in this section we describe
the architectural aspects that enable the provisioning and
configuration of collaborative infrastructure. Later in Sec-
tion IV we introduce our novel cross-layer data annotation
mechanism in detail.

A. RADII Architecture

RADII’s software architecture (Figure 1) follows the
Service-Oriented Architecture (SOA) model and consists
of a set of three loosely coupled services: Collaboration
Language User InterfacE (CLUE), Orchestrator, Compute
To Infrastructure (C2I) and Data To Infrastructure (D2I).
Each service provides a subset of the system’s functionality
and operates independently. We note that the architecture
lays over an Infrastructure-as-a-Service (IaaS) Cloud model
but the architecture is generic and is amenable to different
models.

B. Collaboration representation and data model

We use a dataflow formalism to represent data-centric
collaborations. A dataflow diagram (DFD) is a graphical
representation of the flow of data through an information

Figure 1: RADII design

system, modeling its process aspects. DFD is a model widely
adopted by scientists to describe complex data activities
without having to dwell into infrastructure and implementa-
tion issues. A DFD consists of four types of entities (refer to
Figure 1): processes (P1 in figure; activities that transform
data from one form to another), datastores (D1 in figure;
where the data is stored), externals (E1 in figure; what
sends data into a system or receive data from the system)
and dataflows (F1-F3 in figure; routes by which data can
flow). In RADII these entities are high-level artifacts that are
mapped to underlying physical resources. In a collaborative
infrastructure a process is a compute artifact that performs
computational tasks, e.g., a virtual machine; a datastore
represents a storage resource to host data at rest, e.g., VMs
configured with iRODS; an external entity corresponds to a
system outside the collaboration acting as the input or output
of the collaboration, e.g., storage facility hosting a public
data set; and, a dataflow corresponds to network connectivity
between entities, e.g., virtual network links deployed across
multiple network providers. The box labeled DFD in Figure 3
illustrates an example of a DFD model and its corresponding
underlying physical representation. Note how each entity
is mapped to a pre-configured specialized infrastructure
dedicated to support tasks in the scope of the entity. For
instance, a process for genomic analysis can be mapped
to an inter-connected virtual cluster of VMs pre-configured
with genomic analytic software. Specialized infrastructures
are connected by dataflow entities (networks links) to form



an end-to-end virtual infrastructure capable of supporting all
activities related to the collaboration.
Infrastructure Management Attributes Each entity is
associated with attributes that describe its underlying phys-
ical representation in detail. For instance, the location
attribute in a process or a datastore alludes to the specific
site where the underlying resources should be deployed. If
the process is implemented with multiple resources, e.g.,
cluster of VMs, the attribute is expanded to support multiple
entries. These attributes are then translated to actions by the
infrastructure during the resource provisioning cycle. Exam-
ples of other attributes associated to processes are number
of VMs, number of cores, RAM size, storage
size, etc. bandwidth and anti-locations are at-
tributes associated with a dataflow and refer to the bandwidth
that should be allocated to a network path and network
providers that must be bypassed when computing the (short-
est) path between two end points, respectively.
Data Management Attributes A datastore entity is as-
sociated with a rich set of attributes that capture data
governance within the collaboration. In RADII we choose
to use iRODS due to its ability to support complex data
policies enforced by a rule engine. Therefore, in a collab-
orative infrastructure a datastore is always mapped into an
iRODS grid which attributes can be tailored to the collabora-
tion. Common attributes are locations of resource
nodes, number of resource nodes, capacity
of each resource node, etc.
Location-aware Data Access Control We consider a simple
yet powerful data access control strategy to develop our first
prototype. As illustrated in Figure 3, a data policy consists
of a number of tags, each of which has a user-defined name
(e.g., red) and a list of predefined data access operations
(e.g., create, read, update, delete). We leverage the metadata
capability of iRODS to allow users to encode tags into
the metadata associated with each file. In addition, each
(tag,operation) tuple is associated with an access control list
(ACL) with the identifiers of the collaborators authorized to
perform the specific operation on files tagged with the given
tag. For instance, as shown in Figure 3, files associated
with tag red can be only read by charles and fan.
The strategy is novel in that it is aware of the physical
location of the nodes hosting the data. As shown in the
figure, each tag can specify location for entries of the
create operation to restrict tagged data items from being
created on datastores deployed at unspecified Cloud sites,
e.g., data item with tag named red can only be created
on datastores provisioned by Cloud site at Oakland, CA.
This is a simple yet powerful example of RADII bridges
infrastructure and data management into a unified control
management framework seamlessly. It is important to notice
that to achieve this capability with state-of-the-art technolo-
gies, e.g., iRODS out of the box, a user must have deep
knowledge of the physical infrastructure.

C. Collaborative Language User interfacE (CLUE)

CLUE (Figure 2) is the user interface for composing data-
centric collaborations. In this interface a collaboration is
represented by a CLUE object (Figure 3). A CLUE object is
a graph-based representation of a DFD in human-readable
format. To facilitate the composition of collaborations users
are presented with templates (Figure 3) for each dataflow
entity. A template is a partial layout of an entity with
attributes set to sane default values and enables the level
of customization that tech-savy scientists demand.

The CLUE interface exposes a RESTful API and a graph-
ical user interface (GUI) (see Figure 2) via which CLUE
objects –in JavaScript Object Notation (JSON) format– are
passed onto the Orchestrator service for deployment and
provisioning.

Figure 2: CLUE graphical user interface

D. Orchestrator

The Orchestrator is responsible for orchestrating all the
activities pertaining to managing the collaborative infras-
tructure through out its entire lifecycle, i.e., composition,
instantiation, modification, query and destruction. The Or-
chestrator takes a CLUE object as input, extracts all the
information related to the configuration of the infrastruc-
ture and data policies and submit them to C2I and D2I,
respectively. To manage the collaboration through outs entire
life-cycle it queries C2I and D2I periodically to obtain
information about changes in the infrastructure (e.g., failed
resource due to power outage) and data (e.g., storage capac-
ity). State information about the collaborative infrastructure
is propagated to users via web notifications.

E. Compute to Infrastructure (C2I)

C2I handles all configuration and management aspects
of the compute virtual infrastructure. It translates high-level
resource requirements extracted from the DFD entities in the
CLUE object into a concrete request consumable by the IaaS
provider underneath. For example, it ensures that VMs have
the proper resource capacities, e.g., RAM. As described in
Section II we chose ORCA/ExoGENI as the IaaS provider
due to its ability to provision durable networked infrastruc-
ture and its programmability. A built-in ORCA/ExoGENI
client in C2I is responsible for creating a NDL request that
includes all the requirements specified in the CLUE object



Figure 3: CLUE Object

and submitting it to ExoGENI. Once the request is served,
i.e., virtual infrastructure is deployed, active and accessible,
C2I continues managing the virtual infrastructure at run
time including retrieval of state, modification of individual
resource capacity and removal/addition of resources.

F. Data to Infrastructure (D2I)

D2I is the homologous to C2I with respect to data man-
agement policies. It translates high-level data policies into
rule artifacts that the underlying data management system
understands. These rules are ultimately applied and enforced
by the data management systems through out the life-cycle
of the data.

As we explained in Section II, RADII uses iRODS as
the underlying data management system. To support the
access control mechanisms discussed earlier, D2I maintains
an iRODS rule for every <tag, operation> tuple. Each rule
is a procedure that specify the actions to be executed for
the given tuple including the validation logic required. For
example, as shown in Figure 3, fan is the only user allowed
to create files with tag red on iRODS resources at Oakland
site; thus the operation will fail if anyone other than fan
attempts to perform this action. This mapping is defined at
the time of creating the collaboration and maintained as state
information in D2I; it can modified throughout the life-cycle
of the collaboration. Note that scientists don’t have to write
the rules, these are pre-coded in advanced and built-into D2I
by a system administrator and can be modified at run-time.

IV. CROSS-LAYER DATA ANNOTATION MECHANISM

In the previous sections we described how RADII provides
an unified interface via which users can describe data and
infrastructure management aspects of a collaborative infras-
tructure, enabling the encoding of low-level infrastructure
constraints such as data placement in files metadata. In this
section we describe a feature that builds on this capability to

allow scientists to encode user-defined performance policies
into files’ metadata and to enable the translation of these
policies into routing and bandwidth allocation plans that
meet user and system performance goals.

A. Dynamic SDN Network

Recall from Section II that data transfers over the wide
area network experience poor performance due to high
latency exacerbated by network congestion. To mitigate the
effect that these conditions have on data transfers RADII
relies on SDN. More specifically, iRODS resource nodes
are connected through a SDN-able network capable of
differentiating file transfer intelligently. In our first prototype
we support user-defined prioritization of file transfers. Users
encode a priority class low, medium, high to a file to indicate
the importance that transferring that file has over other
transfers in the network. The SDN network maintains a
mapping of these priorities to algorithmic artifacts that drive
the estimation of bandwidth allocation and routing plans
whenever the file is transferred over the SDN network. Later
in this section we describe how SDN relies on conventional
networking planning algorithms to compute these estima-
tion, translate them into forwarding rules and inject them
into the network switches for enforcement.
SDN Network: Figure 4 depicts a typical deployment of
a SDN network connecting iRODS resource nodes in a
collaborative infrastructure created via RADII. There is one
iRODS resource node in each Cloud site. Each of them
is connected to the software switch at the edge of the
Cloud site; switches are inter-connected using inter-rack
virtual network links. The software switches are controlled
by the SDN controller to route network traffic. The iRODS
resources are able to communicate with the SDN controller
using its RESTful northbound API (Figure 5) to exchange
information about data transfers. The SDN controller or-
chestrates data transfer requests and the injection of rules



Figure 4: The SDN network

into the software switches, but offloads the network planning
including routing and bandwidth allocation to the Network
Planner. The Network Planner is a dedicated, stateless
optimization solver deployed as a service on a separate VM
host.

End-to-end workflow: To initiate a data transfer, the
iRODS resource passes into the SDN controller context
information about the transfer and the state of the network;
a context includes file metadata, bandwidth demands, IP
addresses/ports, etc. The SDN controller uses the informa-
tion as the input to the planning algorithm in the Network
Planner, which generates a solution containing network path
assignments and bandwidth allocation for each path. The
solution is sent back to the SDN controller through its
northbound API and translated into OpenFlow rules which
effectively executes the routing plan. After the rules have
been injected into the software switches, the SDN controller
notifies the sending resource with the bandwidth allocation.
The resource initiates the transfer and throttles its sending
rate accordingly. Other active transfers may also have to
readjust their sending rates to accommodate for the new re-
quest. Note that file transfers (flows) are uniquely identified
and mapped to forwarding rules through a tuple that includes
source/destination IP addresses and source/destination port
numbers.

Entry Method Note

iRODS
client

/limit PUT set a transfer rate limit

/limit/[id] POST update the rate limit
DELETE remove the rate limit

SDN
controller

/meta/[tag] PUT map a metadata tag to a
priority class

DELETE remove the metadata-
priority mapping

/transfer PUT add the transfer
/transfer/[id] DELETE delete a transfer
/algorithm/[id] POST set the routing algorithm

for the SDN network
Graph
Solver

/algorithm/[id] POST invoke the routing algo-
rithm

Figure 5: Common APIs in the SDN network

Network Allocation and Routing Algorithm: SDN net-
works offer a high level of flexibility in using custom
network algorithms. This is particularly useful in our context
to customize network management to the needs of the
scientific community it serves. Our SDN controller offers
a simple API (Figure 5) for network planning configuration

including the mapping of metadata tags to priority values.
The SDN controller keeps this mapping to perform priority
assignment upon receiving file transfer requests.
{"priority": 1,
"classes": [1, 2, 4],
"demands":{
"s1,s2":[500],
"s2,s3":[200]

},
"network":{
"s1,s2":[300,21.3,0.1],
"s2,s3":[600,48.6,0.25],
"s1,s3":[300,12.3,0.15]

}}

(a) input

{"s1,s2":
{
"s1,s2":[300],
"s1,s3,s2":[200]

},
"s2,s3":{
"s2,s3":[200]

}
}

(b) output

Figure 6: An example of Graph Solver’s input/output

In our first prototype we use the planning algorithm shown
in Figure 7 to compute bandwidth allocations while respect-
ing file transfer prioritization. The algorithm is invoked upon
every file transfer request received by the SDN controller.
It iterates over priority values represented by non-negative
integers from 0 to a predefined maximum value. For each
priority p, the algorithm aggregates bandwidth demands of
data transfers with priority p (Line 3). It then invokes the
custom routing algorithm on the Network Planner (denoted
by solve()) with current network capacity (Line 4), to
calculate path and bandwidth allocation. The allocated paths
and bandwidth will be divided among data transfers with
priority p in a max-min fairness manner (Line 5). At the end
of each iteration, the algorithm updates the network capacity
by deducting the bandwidth allocation from each used path
(Line 6), so that allocation for data transfers with priority p
+ 1 will be calculated based on the updated network capacity
in the next iteration.

In Figure 8, we show the the multicommodity flow (MCF)
algorithm proposed in [18] (Figure 8) as an example of a
custom routing algorithm, which optimizes for maximum
network throughput while preferring shorter paths. Note that
the inputs are denoted consistently with those in Figure 7.
Although the algorithm optimizes path and bandwidth al-
location, it does not assign data transfers to paths, i.e.,
randomly assignment. To address this, we extend MCF to
have transfers of high-priority files favor shorter paths and
hence, higher throughput. We use MCF+ to refer to this
extension of MCF.
Flexible and Extensible: RADII administrators can provide
new algorithms as long as these follow the input and output
specifications shown in Figure 6. The input specifies infor-
mation about data transfers and current network state. The
demands field specifies the aggregate bandwidth demand
between each pair of edge switches; the network field
describes the bandwidth availability, latency and loss rate of
each link. The output contains path assignments for each pair
of edge switches and corresponding bandwidth allocation (in
Mbps). In this example, data transfers from switch s2 to s3



Inputs: di,(u,v): demand of transfer i from vertex u to
v; ∞ means no demand specified
cl: capacity of link l
wj : weight of path j (e.g., latency)
Ij,l: 1 if path j uses link l otherwise 0
Pri: priority classes

Outputs: bi,(u,v): allocation to transfer i from edge u
to v; ∞ means no allocation specified

Func allocate:
1 ∀l : cremain

l ← cl
2 for p← 0 to |Pri| do
3

{
d(u,v)

}
←
∑

i∈Pri[p] di,(u,v)
4

{
b(u,v)

}
← solve(

{
cremain
l

}
, {wj},{

d(u,v)
}

, {Ij,l}, Pri, p)
5

{
bi,(u,v)

}
← maxMinFair(

{
b(u,v)

}
,{

di,(u,v)|i ∈ Pri[p]
}
)

6 cremain
l ← cremain

l −
∑

(u,v),j b(u,v),j · Ij,l
7 return

{
bi,(u,v)

}
Func maxMinFair({bj}, {di}):

8 if ∞ ∈ {bj} then

9 ∀j : bj ←
min({cremain

l |Ij,l=1})
|Pri|

10 fairrate←
∑

j
bj

|{di}| ; F ← ∅
11 foreach di do
12 if di > fairrate then fi ← fairrate
13 else fi ← di
14 F ← F + {i}
15 return {fi|i ∈ F}

Figure 7: Allocation algorithm on SDN controller

are allocated a total of 200Mbps bandwidth along path [s2,
s3]. In Section VII we discuss how we will build on this
feature to continue our line of work.

V. EVALUATION

In this section we demonstrate that RADII is able to
improve the performance of data transfers in data-centric
collaborations thanks to the cross-layer data annotation
mechanism in conjunction with SDN support. We evaluate
the impact that network optimization has on the transfer of
files in a typical iRODS deployment. Specifically, we im-
plement the MCF algorithm proposed in [18] (Figure 8) for
network optimization and enforce data transfer prioritization
as we described in Section IV. We compare throughput of
data transfers in the SDN network when using MCF as
compared to conventional algorithms such as Equal-Cost
Multi-path (ECMP) used widely in data-centers and IaaS
providers.

A. Experiment Setup

The experiments are run on a virtual infrastructure (Fig-
ure 9) deployed across four Cloud sites on ExoGENI: UH
(Houston, TX), UFL (Gainesville, FL), UMass (Amherst,

Func MCF({cl}, {wj},
{
d(u,v)

}
, {Ij,l}, Pri, p):

maximize:
∑

(u,v) b(u,v) −
∑

(u,v),j wj · b(u,v),j
subject to: ∀(u, v) : 0 ≤ b(u,v) ≤ d(u,v)

∀l :
∑

(u,v),j b(u,v),j · Ij,l ≤ cl
∀(u, v), j : b(u,v),j ≥ 0
Figure 8: MCF algorithm

MA) and PSC (Pittsburgh, PA). It consists of four Open
vSwitch [27] software switches, each of which is deployed
on a VM with 2 cores, 6GB RAM and 50GB disk and con-
nected to an iRODS resource on a VM with 4 cores, 12GB
RAM and 75GB disk. The switches are inter-connected us-
ing inter-site virtual network links with 600Mbps bandwidth.
The iRODS resources and switches are connected using
intra-site links with 1.8Gbps bandwidth. The topology of
the virtual infrastructure is representative of a data-centric
collaboration: iRODS resources are deployed at the network
edge of each institution dedicated for inter-institutional data
transfers over WAN; clients transfer data to their local edge
resource before sending to other institution, and retrieve data
from the edge resource once it arrives. The SDN controller
and Network planner run separately on VMs with 4 cores,
12GB RAM and 75GB at the SL Cloud Site at Chicago,
IL. The SDN controller is implemented using RYU SDN
framework [16], and the Network planner is developed with
SageMath [31].

Figure 9: The experimental virtual infrastructure

We select ECMP as our base line routing algorithm for
our experiments due to its wide adoption in data centers
and IaaS providers. It is able to balance network load across
multiple paths by hashing packet headers and selecting paths
based on the hash values. The MCF algorithm, as illustrated
in Figure 8, takes into account demands and availability
of network resources for network optimization, aiming at
maximizing the overall throughput while favoring shorter
paths. As such, it is an example of how algorithms can
leverage the global view of the network available through
SDN support to perform network optimization.

To evaluate the effect that prioritizing file transfers have
on network performance we associate smaller files and larger
files with high priority and low priority, respectively. In
other words, we assign high and low priority values in
their associated metadata. As described in Section IV-A,
the SDN controller invokes the routing algorithm iteratively
in descending order of the priorities. The intuition behind



this approach is that by prioritizing bandwidth allocation for
small files, we prevent large files from hogging the network.

In this evaluation, we use files in size of 256MB, 1GB
and 4GB for data transfers to represent small, medium,
large files, respectively. This distribution is representative
of the communities work with and have used RADII. To
make our experiments realistic, we produce a background
load consisting of 200 simultaneous file transfers and 80%
network.

B. Results

We compare the throughput of data transfers achieved
by ECMP an MCF+. We observe that MCF+ outperforms
ECMP by 28.2% in overall throughput. Specifically, MCF+
improves the throughput over ECMP by 39.6%, 23% and
20.2% for transfers of 256MB, 1GB and 4GB files, respec-
tively. Through deep observation of our results, we found
that ECMP leads to network under-utilization due to the
occurrence of collisions of hash values. In the presence
of collisions, transfers are concentrated onto a few paths
and contend for limited network resources while leaving
resources on other paths unused. The contention also leads
to network congestion, which causes additional packet loss
and decreases the throughput. As a consequence, as shown
in Figure 11, the throughput yielded by ECMP is unstable
and sometime decreases significantly. The low throughput
is also reflected in the network utilization observed in our
experiment. As shown in Figure 12, the network utilization
with ECMP is lower than 50% in average and sometimes
drops to 30% due to network congestion.

In constrast, MCF+ enables data transfers to exploit
network capacity. With the primary goal of maximizing the
overall throughput, MCF+ spreads data transfers across all
paths to utilize the network capacity at its maximum. As
shown in Figure 12, MCF+ achieves around 70% network
utilization in average, which is significantly higher than
that achieved by ECMP. Distributing transfers across paths
also avoids network congestion, reduces packet losses and
increases throughput. Besides, MCF+ also optimizes the
resource allocation by favoring shorter paths. Since network
latency is negatively correlated to throughput [22], data
transfers can benefit from the lower latency exhibited on the
shorter paths to attain higher throughput. As a result, MCF+
achieves higher throughput of data transfers with higher
stability than ECMP. Figure 11 depicts a graph showing
that throughput when MCF+ is used exhibit low variation
consistently.

To investigate the effect that prioritizing data transfers
have on the network performance, we compare the through-
put of data transfers as a function of file size. As shown
in Figure 10, transfers of 256MB files yield the lowest
throughput in average using ECMP, while attain the high-
est throughput using MCF+ among all transfers. The low
throughput is partly due to TCP slow-start [4]: data transfers

256MB 1GB 4GB
File size

0.0

0.2

0.4

0.6

0.8

1.0

T
h
ro

u
g
h
p
u
t 

n
o
rm

. 
to

 m
a
x
.

ECMP MCF+

Figure 10: Average throughput comparison between ECMP and
MCF+

0 10 20 30 40 50
Transfers

0.0

0.2

0.4

0.6

0.8

1.0

T
h
ro

u
g
h
p
u
t 

n
o
rm

. 
to

 m
a
x
.

ECMP MCF+

Figure 11: Throughput variation of a data transfer between UFL
and UMASS repeated for 50 times

take longer time to probe sending rates on a longer path;
on the other hand, packet loss forces transfers to decrease
sending rate and prolongs the rate probing process. In other
word, longer paths are detrimental to the throughput of small
file transfers, since the transfers have small time window
to recover from packet loss and can finish before reaching
the maximum rates. With MCF+, transfers of smaller files
are assigned to shorter paths due to prioritization scheme.
As a result, they exhibit larger throughput improvement and
higher throughput than transfers of large files.
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Figure 12: Network utilization variation during data transfers
between UFL and PSC

In summary, the evaluation identifies problems with using
the generic network provided by IaaS providers and reveals
benefits of SDN networks provided in RADII. We believe
that the integration of custom routing algorithms and cross-
layer data annotation in RADII can be applied to extensive
use cases and open up many opportunities to advance data-
driven research cyberinfrastructure.

VI. RELATED WORK

The emergence of national cyberinfrastructures, e.g., Ex-
oGENI and OSG, provides the scientific community with
convenient access to large-scale distributed, heterogeneous
systems and software. They provision diverse, on-demand
infrastructural resources (e.g., compute, network, storage)



powered by high-performance virtualization and advanced
networking. Users specify their resource demands through
standard interfaces and subscribe compute resources based
on needs. For example, ExoGENI link distributed resources
into connected arrangements, slices which provide mutually
isolated pieces of networked virtual infrastructure built to or-
der for guest applications like scientific workflows. However,
deploying custom applications and tuning them for better
performance and sharing require a considerable amount of
time and expertise. RADII automates the deployment and
configuration process and provides a simple interface for
resource subscription, simplifying the usage of the cyberin-
frastructure.

The heterogeneity and distribution of data systems also
impose obstacles in data-centric research. Existing ap-
proches to address this consist of uniforming uniform
data access and operations through an unified virtualization
layer [7] [15]. It is also recognized that metadata service
is essential in data grids to support advanced data manage-
ment [8]. Globus Online [14] implements a Software-as-a-
Service (SaaS) over distributed data storage to enable reli-
able and secure data sharing across domains. Nirvana [25]
leverages metadata of data to realize fine-grained data shar-
ing and management in collaborative workflows. iRODS
enables more sophisticated data management across domains
with an integration of a powerful rule engine and a metadata
service. Data policies are composed using the rule language
and interpreted into computer instructions by the rule engine
through out the life-cycle of data managed by the data grid.
In order to hide the complexity of the underlying system,
these systems treat the infrastructure as an opaque object
thus hampering the capabilities of the data management
layer. This is in contrast to our approach in RADII in that we
enable the right level of visibility and controllability between
the data and the infrastructure management layer.

Network performance is a crucial aspect of distributed
systems since networks enable the exchange of data within
and across systems. Distributed file systems like HDFS [33]
and GFS [17] account for static network topology for
scheduling data replications, to find the path with minimum
total distance between the requester and replica. Sinbad [9]
monitors the bandwidth utilization at the edge to locate
bottleneck links and keeps write operations from those
congested links. SDN allows distributed systems to further
customize and optimize network management. Hedera [3]
balances network flows within datacenters by using SDN to
resolve large flow conflicts caused by ECMP forwarding.
B4 [21] is a successful SDN deployment over the wide-
area-network (WAN), which maximizes network utilization
while achieving high fault tolerance. Software-driven WAN
(SWAN) [18] integrates MCF function into SDN to glob-
ally plan network capacity and schedule network flows,
which significantly increases the overall throughput. These
solutions are piecemeal in fashion in that they focus on

the networking issues and treat data management aspects
as a secondary consideration. RADII is unique in that it
deeply integrates both aspects via advanced orchestration of
resource provisioning and the encoding of network perfor-
mance policies into file metadata which are later translated
into actionable forward rules.

VII. CONCLUSION

In this paper we have presented RADII, an extensible ser-
vice architecture that enables the rapid provisioning and con-
figuration of durable virtual infrastructure to support data-
centric collaborations. The work is unique in two ways: First,
RADII is representative of a software architecture capable
of making national cyberinfrastructure resources available to
the scientific community to collaborate around data. Second,
the heart of RADII is the integration of data management
and infrastructure management, a quality achieved through
novel mechanisms such a cross-layer data annotation and
SDN. To our knowledge, this is the first work that addresses
reducing the gap that exists between infrastructure and
data. We envision wider applications of RADII to serve
a diversity of goals in data-centric collaborations such as
enabling repeatable data-centric experiments, security policy
enforcement at network layer using data properties, among
others. In our future work we plan to consider advance
security policies to guarantee network isolation of traffic
of sensitive data– a common requirement in many domains
such as health sciences. We believe that RADII can lower
the barrier the scientific community face to establish data-
centric collaborations on cyberinfrastructure resources and
present unique opportunities for performance optimization
tailored to the needs of the scientific community.
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