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Abstract— Collaborative and data-intensive applications are
hosted on geo-distributed infrastructures to exploit comput-
ing resources at scale. However, these applications typically
incur massive data transfers over bandwidth-constrained wide-
area networks (WANs) which impose significant performance
overhead. Conventional distributed computing platforms (e.g.,
Spark) leverage caching to avoid duplicate executions of com-
mon computations and thus reduce network traffic. However,
these techniques were developed for data center environments
and therefore lack advanced network-aware mechanisms to
support high-performance, data-intensive applications over the
WAN in geo-distributed environments. Hence, we develop
Cachalot – a novel network-aware, cooperative cache network
for caching datasets generated by common computations shared
among geo-distributed, data-intensive applications. We perform
a simulation-based deep evaluation using both synthetic and
real traces. The experimental results indicate Cachalot speeds
up data-intensive applications by over 50%, reduced network
traffic by up to 60%; and, outperforms state-of-the-art baselines
by over 20% in geo-distributed environments for various
common user-driven performance metrics.

I. INTRODUCTION

Scientific research is increasingly data-driven, collabo-
rative and dependent on huge datasets that require geo-
distributed computing and data sharing infrastructure. At the
heart of these collaborations are scientists sharing data via
public and private storage infrastructure including Cloud and
on-premise resources. For data processing, scientist rely on
a myriad of compute resources, from large compute facility,
e.g., high-performance computing (HPC) to cloud-hosted
data analytic clusters [2] [8] and national cyberinfrastruc-
ture [14] [5] [4]. In order to use these resources for science
research, scientists move large volumes of data over the
wide-area network (WAN).

Performance overhead resulting from moving data over
the WAN is considered the root cause of poor performance
of geo-distributed, data-intensive applications [46] [45] [53].
Network-driven approaches have emerged as viable solutions
to improve data transfer efficiency in these environments.
In particularly, mechanisms based on software-defined net-
working (SDN) mitigate the impact of network bottlenecks
by avoiding network congestion dynamically –via advanced
routing techniques– or pro-actively –via optimal path as-
signment [35] [34] [37]. These approaches are effective
in improving the utilization of network resources over the
WAN. Nevertheless, given the reduced growth of network
capacity [6] and the increasing growth of data volumes,
data movement will continue to be a dominant factor in the

performance of data-intensive applications at scale. Hence,
approaches that only focus on the network may not be
sufficient to overcome the aforementioned challenges.

Alternatively, caching strategies have the potential to
alleviate the enormous bandwidth requirements associated
with distributing data-intensive workloads at scale [18]. To
achieve this, caching strategies trade storage capacity at
the edge of the network with bandwidth at the network
core. More specifically, they exploit storage to absorb traffic
by maintaining replicas of data objects near the clients.
For instance, computation caching has been recently in-
troduced for data processing frameworks, e.g., Spark [3],
Nectar [32] and Tachyon [40] [1]. By avoiding redundant
executions of common computations, computation caching
reduces network traffic and enables more efficient use of
compute resources within the data center. As a consequence,
data-intensive applications perceive significant speedup and
users observe important monetary cost savings. Nevertheless,
these approaches were developed for data centers deploy-
ments and therefore lack the network awareness and dis-
tributed nature needed to perform in geo-distributed envi-
ronments [26] [44] [27] [52].

Cooperative caching [29] is one caching technique that
has proven effective in managing distributed cache networks
in the Internet [23] [20], mobile networks [49] [41] and
content distribution networks (CDNs) [51] [55]. To support
WAN environments, these approaches optimize for network
and disk I/O performance, but seldom consider the cost
associated with generating data objects not found in the cache
(cache misses). This is partly due to the fact that a typical
data distribution environment is characterized by abundant
storage and moderate compute resources. Therefore, as
we demonstrate in this paper, state-of-the-art cooperative
caching techniques fail to perform well in geo-distributed
data-intensive applications that stress compute, storage and
network resources.

In view of the aforementioned observations, we take
a more comprehensive approach to enable cost-efficient
and performant data-intensive applications. We develop
Cachalot, a novel network-aware, cooperative cache network
that amortizes the cost of data transfers by means of caching
output datasets of redundantly executed computation jobs;
and, makes cache placement and replication decisions based
on the availability of network resources. Cachalot is utility-
driven and builds on a combination of techniques that
together performs intelligent trade-off decisions. Cachalot



retains in cache the data of highest overall value while
simultaneously balancing the use of network and storage
resources; and, improves completion time of data-intensive
applications by taking into account the cost of executing jobs
and generating data. To adapt to the ever-changing conditions
of shared environments, Cachalot dynamically revises pre-
vious caching and replication decisions based on resource
availability and data access history. Finally, Cachalot builds
on dynamic logical artifacts that enable the efficient design
and development of caching algorithms. We have performed
a deep evaluation of Cachalot through simulation using real
and synthetic workloads and demonstrated that it reduces
network traffic by up to 60% and outperforms state-of-the-
art cache algorithms by up to 20% for common performance
metrics. Furthermore, Cachalot achieves over 50% saving of
completion time for data-intensive jobs.

The rest of the paper is organized as follows. In Section II
we formulate the problem formally. We describe the system
design of Cachalot and its core network-aware cache algo-
rithm in Section III. In Section IV we present the results of
a deep evaluation on the performance of Cachalot against
state-of-the-art baseline algorithms. We conclude the paper
and refer to related works in Section V and VI, respectively.

II. PROBLEM FORMULATION

We consider an environment where users, compute and
data resources are geo-distributed over the WAN. Users
submit jobs to compute resources. A job can be an instance
of any kind of program specification, e.g., MapReduce, MPI.
Compute resources are hosted on premise or on public
infrastructure such as Clouds and support big data processing
frameworks, e.g., Spark. Similarly, datasets are available
via public data repositories, e.g., NCBI [9], or on-premise
databases. Users are located at institutions or sites with
moderate storage resources for caching data products that
may be reused in the future. We refer to these products
datasets or data objects interchangeably in this paper. A
data object is uniquely identified by the computation job
that produces it. Similarly, a job is uniquely identified by
information such as executable binary, input dataset and
execution parameters. The utility associated with a data
object is not only a function of its potential demand or
usage but also the performance improvement that it provides
to users by virtue of its placement, and the impact on the
corresponding network performance, as well as its size and
the cost associated with generating it. Intuitively, caching a
data object that can be quickly recomputed in a cache node
with poor network availability does not bring much utility to
future requesters.

To process data, users transfer input and output datasets
over the WAN connecting compute and storage infrastruc-
ture. Thus, the end-to-end completion time of a single job
consists of the time needed for processing and transferring
data. Both, the sharing of oversubscribed compute resources
and lossy and high-latency network paths result in unpre-
dictable long end-to-end execution times. By adopting an
advanced caching strategy datasets can be reused and trans-
ferred from near-by cache resources instead of recomputing

jobs thus effectively reducing completion time and cost on
behalf of the users.

We represent the cache system as a network or a complete
graph G=(V,E), where V and E denote the set of cache
nodes and network links between them, respectively. The
capacity of each node v ∈ V is denoted by Cv . The
bandwidth and latency of each link e ∈ E is denoted by
be (be > 0) and le (le ≥ 0), respectively. We use M to
denote the set of data objects cached in G, in which size of
each object m ∈M is denoted by sm. We use um,v to denote
utility value of data object m on cache node v. The placement
of data objects are represented by a binary matrix P : Pm,v is
1 if data object m is placed in cache node v and 0 otherwise;∑
v∈V

Pm,v = 0 if a data object m′ ∈M is no longer in cache.

Since data objects can be transferred between cache nodes,
we use binary matrix T to denote all possible data transfers:
Tm,e is 1 if data object m is transferred over link e and 0
otherwise. We aim at maximizing the total utility value of
data objects in cache while minimizing cost for data transfers
due to relocation and replication of data objects. The problem
can be formulated as follows:

max
∑
m∈M

∑
v∈V

Pm,v · um,v−
∑
m∈M

∑
e∈E

Tm,e ·
(
sm
be

+ le

)
s.t.

∑
m∈M

Pm,v · sm ≤ Cv ∀v ∈ V

(1)∑
v∈V

Pm,v ≥ 1 ∀m ∈M

(2)
Pm,v ∈ {0, 1} ∀m ∈M,∀v ∈ V

(3)
Tm,e ∈ {0, 1} ∀m ∈M,∀e ∈ E

(4)

Constraint (1) is the capacity constraint that ensures the
total size of data objects cached in each node will not exceed
the capacity of the node. Constraint (2) is the placement
constraint that guarantees that every data object in cache
has at least one copy available in certain cache nodes. Con-
straint (3) and (4) are binary constraints with P and T being
binary matrices. We note that the binary constraints transform
the problem into a 0-1 multiple knapsack problem, which is
proven NP-complete [39]. We introduce an advance network-
aware caching algorithm to address this problem.

III. SYSTEM DESIGN

Cachalot is a distributed, cooperative cache that maintains
output data of executed jobs, so as to reduce redundancy of
jobs execution. It adopts an adaptive network-aware cache
algorithm, which adjusts to ever-changing network condi-
tions and exploits distributed cache capacity to reduce job
completion time and better utilize resources. More impor-
tantly, Cachalot is utility driven in that a utility value asso-
ciated with data objects drives all cache activities including
eviction, replication and placement. In Cachalot the utility
captures the performance gain resulting from caching data
objects based on their placement, usage and availability of
network resources.



A. Architecture

Cachalot is a cache network. Its architecture consists of a
Cache Manager (CM) and a number of interconnected Cache
Agents (CAs). Each CA is equipped with storage to cache
data and runs an instance of a network-aware cache algorithm
to manage its local cache. Its primary role is to serve as
a first-level cache for clients that are co-located with the
CA. CAs work cooperatively on data placement, retrieval and
replication to reduce completion time of jobs while relying
on the CM to maintain a global view of the system and
orchestrate caching and operational activities among them.

At a high-level Cachalot serves clients as follows. Upon
submission of a new job, a client first contacts its local
CA. If a replica of the output dataset associated with the
job is hosted in the CA, it is directly sent back to the
client. Otherwise, the local CA contacts the CM to find a
remote CA hosting a replica. If no replica is found in the
network of CAs, the client submits the job for execution
to a compute resource, e.g., Cloud, and cache the execution
result into Cachalot after its execution. If the replica is found
in a remote CA, the local CA fetches the remote replica
and serves it to the client. Finally, the CA runs the cache
algorithm to decide if to maintain a replica locally. It consults
the CM about network resources and the availability of
replicas in other CAs in order to act cooperatively. Following,
we describe our approach in detail. We first introduce logical
artifacts needed to support the efficiency of the caching
algorithm followed by a description of the algorithm.

B. On datapods, dataserver and dataclients

In Cachalot clients retrieve replicas from the cache node
that offers better network connectivity, i.e., bandwidth. Nat-
urally, CAs can be logically organized into clusters. Each
cluster serves and manages one replica and since replicas
are created on demand, there may be multiple replicas for a
given data object d at any point in time. We refer to a cluster
as a datapod. There is a datapod for every replica. Each
datapod consists of a dataserver and a group of dataclients.
The dataserver hosts and serves the replica to its dataclients.
The membership of a datapod consists of CAs that observe
good network connectivity, e.g., bandwidth availability, with
the dataserver node – as compared with other dataserver
nodes hosting a replica of d. The CM maintains a catalog
of cached data object records, each of which is mapped to
a set of datapods. The record of a datapod specifies the
address of the dataserver, a list of its dataclients and their
retrieval history. As explained later the CM also maintains
network monitoring information to support decision-making
processes and datapods’ membership. Intuitively, a datapod
represents an optimized cluster of consumers (dataclients)
and a producer (dataserver) of a replica whose membership
varies as a function of the utility that the replica brings to
the cluster

The CM maintains monitoring information about the cache
network. When a CA requests a data object on behalf of a
client, the CM looks up the catalog for datapods with replicas
of the requested data object; and, responds with the datapod
that incurs the least data transfer time to the requesting CA

together with the aggregate retrieval history of the replica.
Following, the CA joins the datapod and fetches the replica.

When a dataclient joins a datapod, the dataserver updates
its membership and estimates the available throughput with
the new dataclient. The dataserver also maintains retrieval
history of its replica. The retrieval history includes retrieval
frequency and recency (time elapsed since last retrieval) of
the replica for each dataclient. These metrics are used to run
the network-aware cache algorithm, which will be introduced
shortly. If a datapod is dismissed, i.e., replica evicted, the
dataserver informs the CM to delete its record. Additionally,
dataclients may migrate among datapods in response to
changes in network conditions and replica distribution. We
describe this process in detail later in this section.

Fig. 1: Cachalot Architecture. The bottom layer is the physical infrastructure
in which CAs are interconnected via WAN and co-located with clients. The
CM coordinates cache operations among CAs. The upper layers are datapod
topologies of different data objects. CAs with a crown are the dataservers
and dataclients fetch replicas from the dataserver of datapods. Note that a
dataclient of one datapod may migrate to another datapod (shown in the
middle layer) due to changes in replica distributions and network conditions.

C. Network-Aware Cache Algorithm
Following we describe the caching algorithms behind

Cachalot and depicted in Fig. 2 in the form of pseudo code.
Cachalot seeks to retain in cache data objects that provide
high utility to the overall system.

Recall that there is a replica per each datapod in the
system. Therefore, the creation and dismissal of a datapod is
equivalent to the insertion and eviction of a replica, respec-
tively. Additionally, as explained earlier in this Section, the
structure of a datapod is driven by the network performance
observed by its dataclients. We leverage these features to
introduce an utility function that captures the value of a data
object as a function of the cost associated with generating
it, i.e., computational cost in units of time, its network
accessibility, i.e., achievable throughput between clients and
dataclient and its usage, i.e., recency. This utility drives all
caching and replication decisions in Cachalot. Following we
formally introduce the utility function.

U(d, c) =
∑
m∈M

fdm · (min
{
gd, tdκm,m

}
− tdc,m)

rdm · sd

The utility function is built upon a conventional



cost/benefit model [21] and enhanced to consider network
information. In this function, d, c and M correspond to the
data object or replica, the dataserver of the datapod and the
dataclients of the datapod, respectively. We use s, f and
r to denote size, retrieval frequency and recency associated
with the data object d. The numerator of the utility function
is the product of two terms. The first term corresponds
to the number of times that the replica has been served
by dataserver c. The second term is compatible with the
time cost associated with requesting the data object. More
specifically, lets denote gd the completion time of the job that
produces d and would be incurred by the user if d was not
cached. Alternatively, lets assume that κm is the dataserver
of the nearest datapod to m hosting d. A user on site m
would incur tdκ,m time units to transfer d into the dataclient
m. It then takes an additional tdc,m time units to transfer
d from dataserver c to the client. The denominator is the
product of rdm and sd corresponding to the time elapsed since
d was last accessed and the size of d.

This utility function is at the heart of all caching activities
including insertion and eviction of replicas. Upon receipt
of a replica, a CA decides whether to cache the replica
locally (cache insertion) and create a new datapod. To
accommodate for a new replica, existing datapods (replicas)
must be evicted (dismissed). To make this decision, the cache
algorithm calculates the utility of a hypothetical new datapod
(Line 21). If creating the hypothetical datapod yields a larger
utility value as compared to dismissing the datapods with the
least-utility, the hypothetical datapod is created (Line 20–
24). Hence, the insertion of a new replica my result in
the eviction of multiple replicas. The number of evicted
replicas is determined by the total storage capacity needed
to accommodate for the newly inserted replica.

Note that every time a remote replica is retrieved the
insert function is invoked (Line 18). Notably, the algorithm
is observant of the trade-off between re-executing a job and
reusing a cached replica (Line 14-16). The CA raises a
dummy cache miss forcing the submission of a job rather than
enabling a cache hit that would further overload the system.
This optimization step avoids the unnecessary caching of
jobs that generate a large amount of data in a short time,
thus enabling efficient cache and network utilization.

The membership of datapods is updated dynamically in
response to two events. First, upon fetching a replica, a
dataclient is directed to a datapod different to the one it
belongs to. Second, a datapod is dismissed, i.e., a replica is
evicted forcing all of its dataclients to migrate to an existing
datapod. In the former case, member m migrates from its
existing datapod c′ to a new datapod c if and only if such
migration results in better transfer time. In this case, the time
saving yielded is (tdc′,m − tdc,m).
Algorithmic Efficiency. Cachalot has been designed and
developed to operate efficiently in geo-distributed environ-
ments. The storage resource of each CA (self.pods) is im-
plemented using a doubly-linked list proposed in [50], in
which data objects are sorted in ascending order of utility.
In addition, we also use Fenwick trees [30] to maintain
cumulative utility and space used for each data object in

the list. This tree-based data structure allows the algorithm
to efficiently identify data objects for eviction. The runtime
complexity of the algorithm is linear to the number of CAs
in Cachalot which scales well across up to hundreds of geo-
distributed sites. Section III-E gives a detailed complexity
analysis of the algorithm.

/* Note: self is the CA that invokes the cache
algorithm. Some implementation details are
omitted due to space constraint. */

Func insert(key, obj):
1 pod← cm.getPod(key)
2 if pod 6= ∅ and ¬filter(obj) then return

// Evict least-utility replicas in cache
3 self.evictForSpace(obj.size)
4 pod← cm.createPod(obj)
5 pod.replica← obj
6 pod.util← calcUtil(pod)
7 self.pods← self.pods+ {pod}

Func retrieve(key):
8 if key ∈ self.pods then
9 pod← self.pods.getPod(key)

10 pod.util← calcUtil(pod)
11 return pod.replica

end
12 pod← cm.getPod(key)
13 if pod = ∅ then return ∅
14 t← pod.server.estimateDelay(key)
15 g ← cm.getExecTime(key)
16 if t > g then return ∅
17 obj ← pod.server.retrieve(key)
18 insert(key, obj)
19 return obj

Func filter(obj):
20 pod← cm.createHypoPod(obj)
21 gain← calcUtil(pod)
22 if gain ≤ 0 then return false
23 loss←estimateEvictionLoss(obj.size)
24 return gain > loss

Func calcUtil(pod):
25 util← 0, obj ← pod.replica
26 for c ∈ pod.clients do
27 g ← cm.getExecTime(obj.key)
28 sp← cm.getSecondaryPod(obj.key)
29 t1 ← pod.server.estimateDelay(obj.key)
30 t2 ← sp.server.estimateDelay(obj.key)
31 benefit← c.freq ∗ (min(g, t2) −t1)
32 cost← c.timeElapsedSinceLast ∗ obj.size
33 util← util + benefit/cost

end
34 return utilm

Fig. 2: Cachalot network-aware cache algorithm

D. Computation Sharing

We consider big data applications with potentially long
execution times. Therefore, concurrent request of long jobs
are the norm in the scenarios we considered in our work.
Concurrent requests of long jobs may result in a burst of
cache misses followed by duplicated data transfers since
replicas of the data are not yet available in the cache network
To handle this condition, we introduce a simple yet powerful
optimization mechanism. For every running job, the CM
keeps track of its running time and maintains a callback
waiting list. If a new request for a job currently in execution
is submitted, the requester can register a callback for the
output data on the CM and be notified once the data is
available in the cache. As we demonstrate later this opti-
mization approach has significant impact in the performance
of Cachalot.



E. Complexity Analysis

To analyze complexity of the cache algorithm introduced
in Cachalot, we assume that there are n CAs and each of
which can cache at most m data objects. According to [50], it
takes O(log2m) time to insert/retrieve a data object to/from
the cache storage and O(1) time to evict least-utility data
objects.

1) Insertion: Every insertion operation requires a lookup
for CAs with sufficient space by the CM, which takes O(n)
time. If such CAs exist, the CM then takes O(n) time to
select one that costs the least time to send the data object.
Upon receipt of the data object, the selected CA calculates
its utility and places it into cache storage with a total cost
of O(log2m) time. If the cache is full, the CA has to evict
in-cache objects in order to accommodate for the new one. It
costs the CA O(log2m) to perform evictions of least-utility
data objects, and O(log2m) to update Fenwick trees for
utility and space usage accordingly. In summary, the runtime
complexity of an insertion operation is O(n) on the CM and
O(log2m) on the CA.

2) Retrieval: A retrieval operation firstly incurs a hash ta-
ble lookup on the CM to locate datapods with the demanded
data object, which takes Θ(1) time. If multiple datapods
own a replica of the object, it costs the CM O(n) time to
assign the requester to the datapod that requires the least
time to fetch the replica. Then the requester will fetch the
replica from the dataserver of the selected datapod, subse-
quently triggering the calcUtil function on the dataserver
(Line 10). The dataserver takes O(n) time to traverse all its
dataclients in order to re-calculate the utility of its replica,
and O(log2m) time to find a new position to place the replica
with new utility. In addition, it also takes the dataserver
O(log2m) time to update the Fenwick trees. Hence, the
runtime complexity of a retrieval operation is O(n) on the
CM and O(max(n, log2m)) on the dataserver.

3) Replication: The replication operation is analogous
to the insertion operation, except that it costs additional
runtime for the specific CA to make replication decisions.
On receipt of a data object, a CA requests the CM to create
a hypothetical datapod, which takes O(n) time (Line 20).
Then it takes O(n) time to calculate the hypothetical utility
for the received object and O(log2m) to estimate potential
loss incurred by replicating the object. If a replication is
permitted, it takes O(max(n, log2m)) time to insert the
replica into the cache storage. To sum up, the runtime
complexity of a replication operation is O(n) on the CM
and O(max(n, log2m)) on the CA.

IV. PERFORMANCE EVALUATION

We evaluate the performance of Cachalot through sim-
ulation using both synthetic and real-world datasets. We
compare Cachalot against common decentralized cache al-
gorithms including LFU, GreedyDual-Size and Nectar. We
consider two user-driven performance metrics: cache hit
rate and average completion time saving. These metrics
correspond to the percentage of data accesses satisfied by
the cache; and, the average time saved as a result of a cache
hit as compared to executing the job that produces the desired

data object, respectively. We have developed an event-based
simulator using SimPy [13], which is introduced in [36] in
detail. The simulations are run on a bare-metal machine on
NSF Chameleon Cloud [4] with 48 Intel Xeon 2.3GHz CPUs,
128GB RAM, 128GB disk.

A. Simulator

We have developed a event-based simulation framework
built in SimPy [13] to analyze the performance of Cachalot.
The simulator is fully parameterizable with parameters con-
figured via a JSON configuration file. Configurable param-
eters include workload characteristics, bandwidth allocation
and data locality. Following we describe the key components
of the simulator. We defer a more detailed description of the
simulator software and architecture to a future publication.

1) Computation job: A computation job simulates a
computational job submitted by a client and executed by
the compute cluster. A job is represented by a (data item,
operation) tuple. A data item is uniquely identified by an
integer key and associated with a size; an operation consists
of a unique integer string identifier and a set of numerical
functions which are configurable and used for calculating
simulation parameters such as execution time, output data
size and unique identifiers.

2) Client: Currently, the topology of the cache network
is fixed and it is assumed that each client is co-located
with a CA. We further assume that there is one client per
CA; we simulate the job submission rate so to capture the
multiplicity of clients per CA (site). The job submission
process follows a Poisson distribution; this is consistent
with [24]. In addition, popularity and size distributions of the
jobs are also configurable (defaults to normal distribution).
jobs are evenly distributed across clients. The simulator sup-
ports the ingestion of synthetic data sets to drive simulation
experiments. We use this feature to reproduce representative
production-level environments.

3) Cluster: We assume that there is only a single central-
ized cluster that executes submitted jobs and its resource
capacity is set infinite. This assumption is representative
of common production environments wherein a Cachalot
deployment serves a user community that relies on a single
compute infrastructure for data processing. We notice that
this assumption is immaterial to the performance of caching
algorithms such as Cachalot.

4) Cache Network: The cache network consists of clients,
the cluster, the CM and CAs interconnected using full-duplex
network links, each of which is assigned bandwidth and
latency values. The network links simulate data transfers. The
bandwidth and latency values follow a configurable distribu-
tion that defaults to log-normal [28]. Network bandwidth is
dedicated, thus enabling strict performance isolation between
data transfers across links. The CM periodically measures
bandwidth and latency between CAs every one hour. The
network monitoring can be performed in a proactive manner
using tools such as perfSONAR [11] in production environ-
ments. The CM also maintains job execution times collected
from job specifications submitted by the clients when they
attempt to retrieve data from Cachalot. The job execution



times can be accurately estimated in a long run as jobs are
executed with varying load in the cluster.

B. Experiment Setup
1) System configuration and environment: In the syn-

thetic dataset, we simulate a cache network with 100 CAs.
The total cache capacity available in the network is 20%
of the total size of unique data objects in the workload.
The bandwidth of network links follows log-normal dis-
tributions [28] with mean µ ∈ {1, 2, 3, 4, 5} and standard
deviation σ=1, ranging between 50 and 600Mbps.

The real-world dataset consists of network bandwidth
traces obtained from ExoGENI [17], a production network
testbed funded by the National Science Foundation (NSF)
with more than 14 Cloud sites distributed worldwide and
connected via more than 10 network providers. To simulate
a representative WAN environment, we collected the band-
width statistics using iperf3 [7] during the week of July
22−29, 2017.

In both datasets, we assume network latency and packet
loss are negligible and computing resources are infinite.

2) Workloads: To drive our evaluation we use a synthetic
and a real-workload dataset.

Our synthesized workloads consist of 106 computational
jobs with 105 unique jobs. Both job popularity and input
data size distribution follow a Zipf distribution with α ∈
{0.1, 0.3, 0.5, 0.8, 1.2} which is consistent with character-
istics of data-intensive applications in production environ-
ments [19] [31] [47] [25]. Input dataset sizes range between
1.25MB and 125GB which is large enough to cover a broad
range of requirements. We assume that the execution time
and output data size of jobs are proportional to their input
data size which is representative of the vast majority of use
cases driving our work.

To gain insight into the performance of Cachalot against
real workloads we use the OpenCloud [10] dataset. This
dataset consists of a 31-month log of Hadoop jobs running
on a research cluster in the Carnegie Mellon University and
contains 19,198 unique jobs. We have created a workload
with 200,000 jobs following the job distribution in this
dataset.

3) Baseline algorithms: We compare the network-aware
algorithm in Cachalot against three cache algorithms adopted
in state-of-the-art distributed computing platforms as below:
• Least-Frequent-Used (LFU) favors frequently ac-

cessed data objects in cache
• GreedyDual-Size (GD) [21] extends LFU by favoring

small-sized data objects that are frequently accessed
• Nectar [32] adopts a cost/benefit model and favors data

objects with high benefit but low cost. The benefit is
defined as a product of access frequency and completion
time savings, while the cost is a product of data size
and time elapsed since the data object was last accessed
(recency). Notice that Nectar does not take into account
network factors

However, since both LFU and GD are frequency-based
algorithms and GD outperforms LFU, we only show results
of GD. We also consider two common replication strategies:

• Single-copy: there can be only a single copy for each
data object existing in the system at any point of time.

• Replication-based: data objects can be replicated
across CAs with or without constraints.

C. Synthetic Dataset

We start our evaluation with the synthetic dataset.
Network-awareness and performance breakdown. We
investigate the impact that each mechanism introduced in
Cachalot has on the two performance metrics. We also
consider the performance of Cachalot under three different
replication-based strategies: relaxed, filtered and random. In
the relaxed replication strategy a CA replicates every data
object it retrieves. This strategy is common in production
environments. Filtered replication relies on the filter function
introduced in Section III to make replication decisions. In
the random replication a CA makes replication decisions
following a uniform random function. Fig. 3 shows the
results of this experiment.

It is observed that when Cachalot operates without taking
into consideration network monitoring information (static
network in Figure) the completion time saving obtained is
less than 20% which is significantly lower as compared to all
the other cases. Notably, incorporating network information
for the scenario with the single-copy replication strategy
results in an improvement of almost 100% and 50% in
completion time saving and hit rate, respectively. Intuitively,
without network information Cachalot is unable to adjust
its replication and caching strategies to network congestion
conditions resulting from transferring data across CAs. Our
experimental data shows that in the absence of network
information Cachalot inadvertently exacerbates network con-
gestion by sending data over congested network links. Thus
negatively impacting the completion time of jobs.

We then investigate the performance of Cachalot under
the filtered, relaxed and random replication-based strategies.
These strategies present interesting trade-offs between data
availability, i.e., larger number of replicas and cache capacity
efficiency. It can be observed that both the relaxed and ran-
dom replication strategies exhibit comparable performance
for both metrics with hit rate under the random strategy being
slightly better (25%) as compared to the relaxed strategy.
This can be explained by the reduction in effective cache
capacity resulting from aggressive replication. We then focus
on the filtered replication strategy. The filtered replication
yields additional 6% time saving in average as compared
to the single-copy strategy. Recall from Section III that
the filter function in Cachalot only replicates data when
there is a significant gain in utility, hence it only trades off
an acceptable amount of cache capacity for improved data
locality and network performance. We conclude that the filter
function introduced in Cachalot offers the best performance
overall as compared to the other strategies.

Finally, we evaluate the impact that the optimization
mechanism computation sharing has over both user-driven
performance metrics. Recall that this optimization effectively
delays concurrent requests for data objects soon to be avail-
able in the cache network. This technique yields roughly



65% and 18% improvement on job completion time saving
and hit rate, respectively. Note that without this optimization,
Cachalot would blindly replicate and transfer replicas of the
same data object, thus hindering the efficient use of network
resources in the system.
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Fig. 3: Performance breakdown of Cachalot cache algorithm

Impact of network bandwidth. In the following experiment
we investigate the effect that network bandwidth has over
Cachalot as compared to the baseline techniques. Fig. 4
depicts the results of this investigation. Note that [s] and
[r] refer to single-copy and relaxed replication strategies,
respectively.

Particularly, the time savings achieved under the single-
copy replication strategy increases as available bandwidth
increases. This is because single-copy algorithms exhibit
lower data locality and take advantage of increased net-
work bandwidth to transfer remote replicas. In contrast,
replication-based algorithms achieve higher local cache hits.
Nevertheless, they experience worse time savings due to the
reduced effective cache capacity.

As observed, all the other strategies are more or less
insensitive to variations in network bandwidth except un-
der extremely constrained conditions (50 Mbps). Cachalot
achieves up to 50% completion time saving as compared to
up to 30% and 25% for Nectar[s] and GD[s], respectively,
thus demonstrating its ability to efficiently leverage network
information.

Similarly, the hit rate for Cachalot increases with increas-
ing available bandwidth. This is mainly because Cachalot
adapts its replication strategy to bandwidth variations while
the other strategies are network-agnostic. More importantly,
Cachalot achieves up to 75% hit rate followed by GD[s],
GD[r], Nectar[s] and Nectar[r] with 62%, 51%, 50% and
40%, respectively. In-depth analysis of the data shows that
Cachalot replicates more aggressively under constrained con-
ditions and more conservatively otherwise. When bandwidth
is constrained, it trades cache capacity for data locality
by keeping popular data objects locally and avoiding data
transfers.

Moreover, Cachalot saves up to 60% network traffic which
is in contrast with 35% and 39% by GD and Nectar, respec-
tively. This experiment is included in Fig 4. In addition, it is
also observed that the network traffic savings are indirectly
proportional to the available bandwidth. This is because
Cachalot is network-aware and keeps replicas of large data

objects local to clients, therefore reducing traffic into the
network.

Fig. 4: Performance with varying bandwidth. Percentages annotated in the
upper figure are the maximum network traffic saving achieved by Cachalot,
as compared to 34.9% and 39.1% by GD and Nectar, respectively

Stability of datapods and replicas. To confirm our previous
observation and assess the stability of datapods (replicas) in
Fig. 5(a) and Fig. 5(b) we plot the cumulative distributed
function (CDF) of the lifetime of datapods and their cardi-
nality, for various values of network bandwidth. As observed
earlier, under constrained bandwidth conditions Cachalot
replicates more aggressively resulting in larger number of
datapods (See Fig. 5(a)) with shorter lifetime (See Fig. 5(b)).

Fig 5 also includes graphs for different replication-based
algorithms. Single-copy algorithms maintain one long lived
replica (datapod in Cachalot) for each data object as com-
pared to replication-based algorithm. Furthermore, this strat-
egy can lead to the creation of network hot spots which
have detrimental impact in the overall performance of geo-
distributed, data-intensive environments. We do not include
graphs for single-copy algorithms due to the lack of space.

As shown, GD[r] creates the largest number of replicas;
40% data objects have more than 5 replicas on average.
However, most replicas have a very short lifetime. Likewise,
although Nectar[r] creates much fewer replicas than GD[r],
their average lifetime is also short. In comparison, Cachalot
effectively trades replica availability by intelligently control-
ling the creation of datapods based on the overall utility that
they bring into the system. This observation in particularly
important for reducing the management overhead in produc-
tion environments.

Fig. 5: Distribution of datapod number and lifetime



In the next experiment we evaluate the impact that the
data size distribution has on the performance of Cachalot.
Fig. 6 depicts hit rate and average time saving as a function
of α for GD[s], GD[r], Nectar[s], Nectar[r] and Cachalot.
The larger α the larger the fraction of small data objects.
The graph shows that the hit rate is less sensitive to the data
size distribution under Cachalot as compared to the other
techniques. This follows intuition since the data size factor
is outweighed by the network factor in the utility function
of Cachalot (See Section III-C).

We also observe that the job completion time saving
decreases when α=1.2 for all algorithms including Cachalot.
This is due to the fact that the majority of data objects
are small and hence their corresponding jobs have short
execution times. Hence, these jobs observe marginal gain
from caching since the time for fetching data from remote
CAs may be comparable to the time it takes to generate the
data. For instance, GD and Nectar cache aggressively when
data objects are small (reflected on the increasing hit rate
in the Figure), but fail to produce significant time saving.
To make things worse, they generate more network traffic
and fail to efficiently use network bandwidth. In contrast,
Cachalot outperforms all baseline algorithms achieving up
to 50% completion time saving for all values of α due to
its unique ability to take into account network monitoring
information and demand.

Fig. 6: Performance with varying size distributions

Naturally, as some data objects become very popular it
becomes more difficult to balance the use of cache and net-
work resources in the system. To investigate this observation
we evaluate the performance of the replication algorithms
as a function of data popularity. More specifically, we vary
α to skew the popularity of data objects. Fig. 7 depicts the
results of this evaluation. As expected, since caching top-
ranked data objects can fulfill most data requests, hit rate
increases as increasing function of α. Particularly, algorithms
with replication-based strategy outperform algorithms with
single-copy replication strategy for large values of α (α=1.2).
This follows intuition since aggressive replication effectively
improves data locality of top-ranked data objects and thus re-
duces the need for data transfers. This reasoning is confirmed
in the plot depicting the fraction of local hits in Fig. 7 which
shows that both GD[r] and Nectar[r] have a higher fraction
of local cache hits as compared to Cachalot, Nectar[s] and
GD[s]. This result is important also because it demonstrates
that Cachalot outperforms the baseline algorithms in hit rate

and average job completion time by virtue of its network
awareness as demonstrated by the modest fraction of local
cache hits (less than 20%). We conclude that Cachalot is able
to more effectively utilize cache and network resources while
observing user-driven metrics by deciding when to replicate
(via the utility function) and which replica to select in a
network-aware fashion.

Fig. 7: Performance with varying popularity distribution

D. Real-World Dataset

Finally, we simulate a real-world environment by merging
the workload characteristics of the OpenCloud dataset – to
simulate workload – with the network bandwidth collection
from ExoGENI – to simulate a realistic network as explained
in Section IV-B. Fig. 8 depicts four dimensions of the
dataset: output data size, popularity distribution of data,
network bandwidth and job execution time. We observe that
the majority of jobs in the workload have relatively short
execution times and generate small data output. The size and
popularity of data objects follow Zipf-like distributions. In
contrast with the assumption made in our earlier experiments,
the job execution time is independent of the output data size.
The network consists of 14 CAs interconnected with network
links with an average bandwidth of 215Mbps.

Fig. 8: Characteristics of datasets. Figures from top-left to bottom-right are:
1) Distribution of output data sizes; 2) Distribution of job popularity; 3)
Bandwidth distribution in the WAN; 4) Relationship between job execution
time and their output data size

Impact of Cache Capacity on Performance. In a pro-
duction federated deployment there is no control over the



Fig. 9: Performance with OpenCloud and ExoGENI datasets

amount of cache resources that each site (CA) contributes
with to Cachalot. In this experiment we study the impact
that total cache capacity has on performance for all the
algorithms. Our results are plotted in Fig. 9. We make three
observations. First, all algorithms perform well in terms of
hit rate for a sufficiently provisioned cache (hit rate varies
between 80% and 85%). This is a due to the fact that most
popular data objects are small in size hence the algorithms
take advantage of statistical multiplexing of cache resources
even when the cache capacity is limited. In particularly,
replication-based strategy can efficiently utilize storage cache
capacity by packing replicas of small data objects. Second,
Cachalot exhibits the lowest hit rate. A deeper look into the
results shows that Cachalot tends to evict jobs that although
small in duration generate large output (See Fig. 8(4)). Notice
that these jobs can’t take advantage of caching due to their
prohibitive transfer cost which in turn exacerbates congestion
in the network. Third, as a consequence of our previous
observation, Cachalot achieves the largest completion job
saving as compared to the other algorithms. GD performs
the worst in terms of completion time saving since it favors
caching small data objects regardless of their overall com-
pletion time.

V. CONCLUSION AND FUTURE WORKS

We have presented Cachalot, a WAN-based, cooperative
cache network for caching results of repetitive computation
jobs in geo-distributed environments. We have also intro-
duced an efficient distributed, network-aware cache algo-
rithm, which adapts its caching strategy to varying network
conditions and effectively reduces completion time of com-
putation jobs. We have investigated a novel caching problem,
in which cache misses will incur extra cost for regenerating
data objects, in addition to disk and network I/O costs that are
considered in traditional caching problems. Our simulation-
based evaluation demonstrates that Cachalot is able to save
over 50% completion time for computation jobs, and our
network-aware cache algorithm outperforms our baselines by
up to 20% in completion time saving.

In the immediate future, we will implement Cachalot as
part of SciDAS [12], a national cyberinfrastructure to enable
large-scale scientific data analysis at scale. To improve cache
efficiency in the presence of very large data objects we will
extend Cachalot to support chunk-based data management.

VI. RELATED WORK

Recent studies [15] [43] [33] have shown that du-
plicate executions of computations cause severe wastage
of computing and network resources and degrade per-
formance of data-intensive applications. An array of
works [22] [42] [32] [54] [40] propose to cache results of fre-
quently executed computations for reusing, in order to elimi-
nate duplicate executions and conserve resources. Spark [54]
adopts lineage to allow efficient, explicit caching of computa-
tions within applications. Nectar [32] and Tachyon [40] break
the limits to support cross-application computation caching
within data centers. However, it is found in [26] [27] [52]
that these works inherently lack network awareness and
are inefficient in tapping network resources for accelerating
data transfers in data-intensive applications. This problem
exacerbates in geo-distributed environments since application
performance is deeply influenced by data transfers over
WANs as identified in [46] [45] [53]. Our work also rec-
ognizes the importance of network factors and proposed a
network-aware system and algorithm design to accelerate
data-intensive computations in geo-distributed environments.

Additionally, a number of distributed cache algorithms
have been developed to cooperatively improve cache per-
formance [19] [31] [16] [49] [41] [51] [55]. PeerOLAP [38]
builds a peer-to-peer (P2P) cache system equipped with a
network-aware cache algorithm, but it relies on a static,
coarse-grained metric to capture network factors with low
accuracy. In [48] the authors assume uniform data transfer
rate in the proposed algorithm, which is unrealistic in real
WAN deployments. There are also optimization approaches
that address the problem as a distributed data placement
problem, which is proven NP-complete in [39], and a number
of heuristic algorithms are proposed to approximate the
optimal placement [51] [18]. However, these algorithms
assume a finite set of data objects in the workloads and
the system has prior knowledge about them, which are not
assumed in our work.
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