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Abstract— We have witnessed a surge in big data applications
being hosted by assorted cloud vendors, and the astronomical
amount of data they produce and consume on a daily basis.
Traditional cluster computing frameworks can hardly cope
with the unprecedented data volume and the geo-distributed,
cross-cloud data distribution due to their limited scalability
and adaptability across the heterogeneous clouds. Moreover,
running data-intensive applications across clouds at will is ex-
tremely cost-inefficient and likely to incur outrageous expenses.
Hence, we introduce our cloud-agnostic system PIVOT with
the novel cost-aware scheduling algorithm, which enables data-
intensive applications to run and scale across clouds instantly in
a cost-efficient manner. We evaluate our system and scheduling
algorithm extensively with simulation, and real-world big data
applications on a deployment across 11 regions on AWS and
GCP. The experimental results show that PIVOT achieves
over 55% saving in expense for VM subscription and up to
92% for egress network traffic compared to the state-of-the-art
baselines. Notably, the cost-aware scheduling also achieves up to
a 10x speedup in data transfers for data-intensive applications.

I. INTRODUCTION

As the demand for cloud computing trends up, a num-
ber of cloud-based platforms have been developed in the
industry and academia to address the increasing needs of
data analysis and processing in the scientific and commercial
sectors. As a result, valuable datasets are stored in the cloud
across various geographical regions and cloud platforms. For
instance, more recently the National Institute of Health (NIH)
established the Commons Cloud Pilot project [15] to broaden
access to high valued datasets across Amazon Web Services
(AWS) and Google Cloud Platform (GCP). Similarly, the
National Oceanic and Atmospheric Administration (NOAA)
provide access to real-time and archival weather radar data in
AWS [17] for weather data analysis and prediction. Scientists
however face steep challenges to be able to use these valuable
datasets in ways that will enable new research collaborations.

The distribution of data across cloud providers imposes
three major challenges for data-driven analysis and applica-
tions: 1) The heterogeneity in resources, networking, APIs
and runtime among clouds prevents applications from scaling
out across clouds, leveraging their unique capabilities and of-
ferings (e.g., Google Genomics, SAGE) and executing close
to data. In other words, a user either runs an application on
one cloud or the other but not across; 2) Without the ability
to scale across clouds in a seamless fashion, the applications
trigger cross-region and cross-cloud data movements, which
can hinder application performance due to low network
throughput over the wide-area network (WAN). That is, to

analyze combined data hosted in two clouds data must be
moved out of one cloud into the other; 3) Since commercial
clouds monetize egress network traffic, i.e., traffic result from
moving data outside a cloud region within or across clouds,
cross-cloud data analysis can incur prohibitive monetary cost
for large datasets.

Therefore, minimizing the financial burden that hosting
data and running computation in the cloud imposes on the
user is critical to promote the adoption of cloud computing.
Later we quantify the implications of making compute place-
ment decisions that are oblivious to this cost. At the heart
of our research work is the development of new scheduling
strategies and techniques that factor egress network traffic
cost into scenarios where data is distributed across multiple
clouds and/or cloud regions.

Application efficiency is one other aspect that deters
scientists from migrating their data-intensive applications
into cloud environments. These applications are mainly data
analytic workflows consisting of processes with temporal
and software dependencies on each other, which execute on
geo-distributed datasets and may produce new datasets at
scale. Workflow engines such as Toil [39] and Galaxy [10]
are commonly used in the scientific community for data
analysis. These solutions, albeit providing predictable per-
formance in controlled campus infrastructure, have not been
designed to perform well on geo-distributed environments;
their scheduling capabilities are oblivious to both the network
infrastructure that connects compute and storage resources as
well as data locality.

To address the aforementioned challenges we propose
PIVOT, a cloud agnostic framework that creates an abstrac-
tion layer over compute and storage resources distributed
across cloud providers to create the illusion of one very
large computer, thus hiding the complexity and heterogene-
ity of individual providers, services, and offerings. These
resources are presented to users through a unified API via
which data processing applications such as workflows can
be executed and scaled across resources independently of
where data is located. To achieve this, PIVOT decouples the
abstraction and management of data and compute, and builds
on advanced middleware mechanisms that orchestrate how
these resources are utilized jointly to provide applications
with acceptable performance, while taking into account the
financial cost on behalf of the users. A fined-grained resource
model for cloud topology in combination with cost-aware
scheduling algorithms allows PIVOT to place computation



close to the data in order to minimize data movement and
egress network traffic cost. We deployed an open-source
based beta implementation of PIVOT across AWS and GCP
and demonstrated its effectiveness through experiments with
synthetic workloads. Our results show that by using its
novel architecture and middleware mechanisms PIVOT can
minimize egress network traffic cost (> 60%) and improve
network throughput up to a factor of 4x as compared to
using traditional cost and data-locality oblivious scheduling
strategies, respectively.

The key contributions of our work are manifold: (1) We
have pioneered a cloud-agnostic framework and architecture
that creates the illusion of one single large computer to
users thus hiding the heterogeneity and complexity of cloud
platforms. (2) We have developed middleware mechanisms
that orchestrate these resources in a unified manner and
enable the deployment of applications across multiple clouds
without imposing additional burden on the user. (3) We have
developed a scheduling algorithm aware of cost and data lo-
cality in that it discerns between cloud regions and providers
to place applications close to the data, thus minimizing data
movement, improving performance, and reducing financial
cost. (4) We performed an empirical and simulation-based
evaluation of data-intensive applications in cross-cloud en-
vironments with respect to cost and throughput. To the best
of our knowledge this is a first of a kind analysis on cross-
cloud environments. (5) We have developed an open-source
implementation of this framework that is available to the
community to deploy their own software stack.

The rest of the paper is organized as follows: we formulate
the problem approached in this paper in Section II; then
we briefly introduce the architecture and key components
of PIVOT in Section III; the cost-aware scheduling algo-
rithm is detailed in Section IV and extensively evaluated
in Section V; we review relevant related research works in
Section V; we conclude the paper and propose future works
in Section VII.

II. PROBLEM DEFINITION

Below we introduce a formal definition of the problem. We
consider a workload model wherein an application consists
of potentially multiple tasks, and these tasks can have depen-
dencies which drive application-level scheduling decisions.

min α ·
∑
η∈H

iη · uη (1a)

+ β ·
∑
τ∈T

∑
τ ′∈T

∑
η∈H

∑
η′∈H

(Pτη + Pτ ′η′) · eηη′ (1b)

s.t.
∑
τ∈T

dτk · Pτη ≤ Rηk, ∀η ∈ H, k ∈ K, (1c)∑
η∈H

Pτη = 1, ∀τ ∈ T, (1d)

Uη ∈ {0, 1} ∀η ∈ H, (1e)
Pτη ∈ {0, 1} ∀τ ∈ T, ∀η ∈ H (1f)

Tasks T are placed and executed on geo-distributed virtual
machine (VM) hosts H provisioned across different regions

and clouds. Note that herein we use VM and host inter-
changeably. Each task τ ∈ T has a resource demand dτ and
each host η ∈ H is associated with Rη amount of resources
available. The vectors dτ and Rη are 4-dimensional, repre-
senting the resource demand and capacity of CPUs, RAM,
disk and GPUs, respectively. Here we use K to represent the
resource dimensionalities. Following the IaaS business model
in the cloud, every running host η incurs a VM subscription
cost of iη dollars per hour, and we assume VMs are turned
off timely when idle. We use a bit array u|H| to indicate
whether host η is in use. Additionally, moving data between
hosts η and η′ results in egress cost eη,η′ per gigabyte. Lastly,
we use a binary matrix P|T |×|H|to represent the placement of
the tasks on the hosts. The problem is formulated as above.

The objective is to minimize the total expense for VM
subscription (1a) and egress network traffic (1b). The con-
straint (1c) is the capacity constraint that limits the total
resource demand of tasks placed on a host to the resource
capacity of the host in any dimension. The constraint (1d)
ensures that a task can only be placed on one host at any
point of time. The constraints (1e) and (1f) indicate that U
and P are binary, respectively. We recognize the problem
as a variant of the multi-dimensional vector bin packing
problem (MDVPP) [23] [28], which is proven NP-hard [28].
Hence, we propose a cost-aware heuristic algorithm in this
paper to tackle the problem.

III. PIVOT
In PIVOT, we seek to support cross-cloud, cross-region

execution of data-intensive applications while hiding the
complexity of the underlying heterogeneous systems and
respecting cost and performance requirements of the ap-
plication. We achieve this through the introduction of a
cloud-agnostic framework that abstracts virtual infrastructure
provided by IaaS across clouds, and a versatile two-level
scheduling approach that minimizes cost by optimizing for
data locality.

A. PIVOT Architecture
The PIVOT architecture (Fig. 1) is designed with cloud

agnosticism at its heart. At the bottom, we build a cross-
cloud virtual infrastructure that enables seamless network
connectivity among geo-distributed regions and clouds. On
top of it, we build the abstraction layer that abstracts
computing and storage resources and transforms them into
standard units uniformly consumable by applications. Fi-
nally, a scheduling layer above controls task placement while
considering both system-wide goals and application-level
scheduling strategies.

The cross-cloud virtual infrastructure unifies resources
provisioned in different regions and clouds in a standard fash-
ion, creating an illusion of a single pool and orchestrating all
aspects of virtual resource management and communication
across cloud regions. This layer is built on top of core cloud
IaaS services commonly provided by major cloud vendors
including VM instances, persistent storage, virtual private
cloud (VPC) and virtual private networking (VPN). In every
cloud region, two types of hosts are provisioned – computing
hosts for computation and storage hosts for data persistence.



The hosts are interconnected through a supernet spanning
over all the regions and clouds. We construct the supernet
with VPCs and VPN tunnels; there is one VPC in every
region peered up with other regions using VPC peering;
regions in different clouds are connected via VPN tunnels.
Every VPC is allocated with a unique, contiguous block of
private IP addresses to ensure that every host in the network
is uniquely addressed. The supernet greatly simplifies both
the communication among hosts by connecting them within
the same network, and the routing among application tasks.
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Fig. 1: PIVOT Architecture

The abstraction layer ensures that applications can run,
scale, and access data among all the regions and clouds
seamlessly. It consists of two components – container or-
chestration [8] for application deployment, configuration and
provisioning, and unified storage for high accessibility to
data. Containerization allows us to encapsulate application
logic in a self-contained manner and makes applications
portable among heterogeneous environments. For high acces-
sibility to data, we deploy a unified distributed storage system
across all the regions and clouds; this approach makes data
and persistent storage accessible by applications anywhere
in the system. Every task in an application is executed
as a container on the computing host, and ingests/persists
data from/to one or many persistent volumes located on the
storage hosts if needed. Additionally, we have developed a
Docker volume plugin [4] that allows volumes to be mounted
as POSIX-compliant file systems within containers for easy
data access. Moreover, by leveraging the node affinity feature
available in common container orchestration [7] [14] and
distributed storage [3] systems, the abstraction layer is
able to leverage placement hints provided by the upper-
layer components for custom placement of containers and
volumes on specific hosts, availability zones (AZs), regions
or clouds. This capability is critical for the scheduling layer
to manipulate the placement of tasks and associated datasets,
e.g., pinning a deep learning application to a GPU-enabled
host. In our prototype implementation, we adopt DC/OS
(Mesos) [6] and Ceph (CephFS) [2] for container orches-
tration and distributed data storage, respectively. However, it

is worth noting that PIVOT’s architecture is generic and thus
container orchestration and distributed storage implementa-
tions can be substituted by alternative technologies such as
Kubernetes and GlusterFS [11], accordingly.

B. Two-level scheduling framework
To accommodate the diverse scheduling goals of applica-

tions, we devise a modular, extensible two-level scheduling
framework that allows for custom scheduling algorithms thus
following the separation-of-concerns design principle. The
framework consists of a single global scheduler and an
extensible array of application schedulers.

The application scheduler is responsible for task schedul-
ing within an application. An application scheduler is typi-
cally built-in and provisioned with the application; it sched-
ules tasks so to achieve application-level goals. For instance,
for workflows the default application scheduler implements
the classic dependency resolution algorithm that resolves
dependencies among tasks. In PIVOT a custom scheduler
is developed by implementing and installing the abstract
application scheduler as a framework module. Newly in-
stalled schedulers can be extended and reused by other
applications with every application running its own instance
of the scheduler. The scheduler operates in a phased fashion;
it monitors the state of tasks and queries the system-wide
resource availability periodically throughout the lifetime of
the application,. Scheduling decisions at the application-
level are communicated to the global-scheduler for system-
wide scheduling considerations. The global scheduler has a
built-in task queue where tasks submitted by the application
schedulers are queued for scheduling and final dispatching.
The global scheduler also runs periodically, invoking the
global scheduling algorithm to schedule tasks in the task
queue and then clearing the queue at each phase. The
scheduling algorithm makes placement and resource alloca-
tion decisions based on the task specifications and the re-
sources available in the system. The scheduled containerized
tasks are sent to the container orchestrator in the abstraction
layer for provisioning, configuration, and execution. When
the minimum requirements of a task cannot be fulfilled
due to issues like resource shortage, it is put back into the
task queue for the next scheduling iteration and the global
scheduler increments a counter of scheduling failures for the
task. Once the counter has reached a configurable threshold,
the global scheduler notifies the corresponding application
scheduler to handle the scheduling failure.

Our proposed two-level design of the scheduling frame-
work enhances the versatility of the scheduling layer by
enabling the offloading of application-specific scheduling
logic to the upper-level scheduler.

IV. COST-AWARE SCHEDULING ALGORITHM

Recall that we are concerned with lowering the financial
barrier resulting from high egress expenses incurred by mov-
ing data in/out cloud regions while improving application
efficiency. To strike a balance between both factors we pro-
pose a cost-aware scheduling heuristic which aims at saving
cloud expenditures for geo-distributed applications running
on PIVOT while improving data transfer efficiency in a



best-effort manner. We implement our algorithm as a global
scheduler in PIVOT.

A. Algorithm design

As identified in Section II, cloud expenditures are mainly
comprised of expenses for VM subscription and egress net-
work traffic, caused primarily by host resource underuti-
lization and excessive egress data transfers. Furthermore,
since network bandwidth is typically constrained among
regions and clouds, egress data transfers tend to exhibit low
efficiency and high delay. Ideally, consolidation of tasks into
the least number of hosts and egress data transfers can both
avoid unnecessary expenses and improve efficiency.

We realize that the problem of task consolidation is
analogous to the known vector bin packing (VBP) problem,
in which the tasks and hosts are items and bins, respectively.
Greedy approximation algorithms such as first-fit (FF) [33],
best-fit (BF) [20], and their variants, are proven effective
in approximating the optimum for the problem. We refer to
the family of FF and BF algorithms as VBP algorithms. We
refer the reader to [26] [33] for an in-depth analysis of VBP
algorithms.

However, whereas the bins in the classic VBP problem are
presumably homogeneous, hosts in PIVOT are distinguished
by egress cost, network bandwidth and data locality. More
specifically, it is preferable for a task to be placed on a host
with its input data for data locality, which we refer to as the
anchor. If the anchor is unavailable, another host is selected
based on a function of its egress cost and available network
bandwidth to the anchor. Intuitively, hosts with lower egress
cost and higher bandwidth are preferred for potentially better
cost saving and data transfer efficiency.

Following this analysis, we design our cost-aware schedul-
ing algorithm as follows (Fig. 2): 1) the initial VBP problem
is divided into sub-problems based on the data locality
requirements of the tasks; 2) an anchor is selected for
every sub-problem, while tasks and hosts are sorted w.r.t. the
selected anchor; 3) the classic FF algorithm is used to pack
tasks into the prioritized hosts. In the rest of this section, we
describe each step in detail.

Func schedule(T , H):
1 G← groupTasks(T)
2 for g ∈ G do
3 g ←sortTasks(g)
4 hosts←sortHosts(H , θ)
5 FirstFit(g, H)
6 return tasks

Fig. 2: Cost-aware scheduling

B. Task grouping and data locality inference

The first step is to divide the problem based on data
locality requirements. In effect, tasks are grouped by their
anchors. Note that although PIVOT allows users to provide
fine-grained data placement information, such information is
seldom available and has to be inferred to retain data locality.
We adopt a data locality inference approach to deduce
data locality requirements from implicit observations in task
specifications. We leverage two pieces of information – the
application locality and dependencies encoded in application
specifications. Intuitively, we assume tasks of the same

application are likely to share data among each other due to
the inter-operations and communications. Furthermore, co-
dependent tasks, e.g., workflows, tend to ingest data from
tasks upstream since they may use the output data of the
precedent tasks as input data. Hence, it is intuitive to co-
locate tasks with their peer (application-locality) or precedent
(dependencies) tasks for data locality. As we show later in
Section V this measure has a significant impact on data-
intensive applications such as workflows.

Func groupTasks(T):
1 G← {}, θ ← ∅
2 for τ ∈ T do
3 if τ.dataP lacement 6= ∅ then
4 θ ← τ.dataP lacement

else if τ.dependencies 6= ∅ then
5 θ ← Host η where most of τ ’s predecessors are placed

else if τ.application has the anchor set then
6 θ ← Anchor of τ.application

else
7 θ ← Random host
8 Set θ as the anchor of τ.application
9 gθ ← gθ ∪ {τ}, G← G ∪ {gθ}

10 return G
Fig. 3: Task grouping

Fig. 3 illustrates the steps of task grouping. First, tasks
with explicit information about placement of input data use
the location of input data as the anchor (Line 4); tasks with
dependencies select the host wherein most predecessors are
placed as the anchor. Following, tasks are grouped by their
anchor (Line 9). Tasks without an anchor are grouped based
on the application they belong to and each such group is
assigned a random anchor (Line 7-8) to ensure the peer tasks
are co-located to meet application-locality requirements.

C. Task ordering

For each group formed in the previous step, the algo-
rithm sorts the tasks in decreasing order of their resource
demand [26] which consequently results in lower VM sub-
scription cost for the user.

To sort the tasks, we model the resource demand of each
task geometrically as an Euclidean vector and calculate its
L2-norm (||dτ ||2) as the size of the task. We note that this is
considered one of the most effective geometric approaches
in the realm of VBP problems [33].

D. Host ordering

The host ordering is critical since it captures important
distinctions among hosts that have measurable impact on
the quality of the scheduling decisions. We introduce a host
scoring function as below to facilitate the host ordering
quantitatively.

Score(η, θ) =
||Rη||2 · (bηθ + bθη)

Cηθ + Cθη + ε

We factor in bidirectional network bandwidth (b) and
egress cost (C) between the host η and the anchor (θ) – the
score is positively correlated with the network bandwidth
but negatively with the egress cost. Likewise, we model
the resource capacity on host η (Rη) as a 4-dimensional
Euclidean vector and use its length as the host capacity,
which is also positively correlated with the host score. The



hosts are sorted in the decreasing order of the host score
given by the function. Effectively, the algorithm prioritizes
hosts with larger capacity, more abundant bandwidth but less
egress cost from/to the anchor for task placement.

In practice, we estimate the network bandwidth regularly
using Assolo [29] – a non-intrusive bandwidth estimation
tool. It imposes limited impact on running applications and
greatly saves the egress cost for bandwidth measurements as
compared to most intrusive alternatives (e.g., iperf [13]).

E. Vector bin packing

To pack tasks into the sorted hosts we use the classic FF
algorithm. By design, the algorithm attempts to place each
task onto the first host it can fit in (first-fit), and only consider
the next host (open a new bin) when no fit is found. With
the sorted host array, tasks are packed onto high-score hosts
first and proceed in decreasing order of the host score.

V. EVALUATION

To evaluate the effectiveness and feasibility of our ap-
proach in PIVOT, we deploy PIVOT across AWS and GCP
clouds. We drive the experiments using both simulations
and real applications to investigate the system and proposed
algorithm in depth. For performance metrics, we focus on the
cost savings in VM subscription and egress network traffic,
but also observe the efficiency of application executions and
data transfers.

A. Experiment setup

1) PIVOT deployment: PIVOT is deployed across 31
AZs in the 11 North America regions1 on AWS and GCP. The
hosts provisioned in the deployment are uniform in capacity
among the regions, each computing host having 4 Skylake
CPUs, 8GB RAM and 150GB disk space (c5.xlarge and alike
instance/machine type) and each storage host having 2 CPUs,
4GB RAM and 150GB disk space (c5.large and alike). The
total number of hosts ranges between 100 − 200, and the
number in each AZ varies between 1− 8.

2) Simulation environment: The simulator simulates the
exact cross-cloud, geo-distributed topology of the real de-
ployment. We collect the network trace among the regions
and clouds using iperf3 for accuracy. Different from the
real deployment, we simulate p3.8xlarge hosts (32 CPUs,
244GB RAM, 320GB disk and 4 GPUs) to evaluate the algo-
rithms with increased resource capacity and dimensionalities.
The simulator is developed in Python using Simpy [18] and
available at [16].

3) Workload: In the simulation, we evaluate the algo-
rithm against data-intensive workflows. We randomly gen-
erate workflows with a mix of common communication
patterns [38] including sequence, parallel-split and syn-
chronization. Each task ingests 10MB−1GB data from its
predecessors, if any. The level of task parallelism for each
workflow ranges between 1−100 tasks; there are over 5, 000
tasks concurrently running system-wide.

1us-east-1, us-east-2, us-west-1, us-west-2,
ca-central-1 on AWS, and us-east1, us-east4, us-west1,
us-west2, us-central1, northamerica-northeast1 on GCP

We also introduce two featured, real-world use cases - 1)
a Hail [12] distributed application and 2) the TOPMed align-
ment workflow encoded in Common Workflow Language
(CWL) [19]. The reasoning behind these choices is that both
workloads exhibit high-level of compute parallelism and data
dependencies thus stressing the challenges encountered in
the cloud distributed environments we consider in this work.
The Hail is a popular open-source genomic analytical tool
developed by the Broad Institute which builds on Spark [1]
to enable large-scale genomic analysis; the TOPMed align-
ment workflow is an example of CWL workflows publicly
available at [9]. We have ported both Hail cluster and CWL
workflows as applications runnable on PIVOT to serve the
biomedical community and enable them to take advantage
of the cross-cloud scalability.

The TOPMed genome sequence alignment pipeline
adapted for this experiment is available at [5]. The number
of parallel tasks varied between 10-70. The topology of the
dependency graph is a map and reduce structure starting
with splitting the input, two intermediate phases processing
the chunks, and a final aggregation phase. The high level
of parallelism and data dependencies lends itself well to
analysis of distributed scheduling algorithms.

4) Baseline: In our evaluation we compare our cost-aware
to the following baseline algorithms.
• Opportunistic is a common scheduling strategy

that assigns tasks to hosts with sufficient resources
opportunistically for high resource utilization in overall
as adopted in [30] [22] [40]. In our implementation,
the scheduler assigns tasks randomly to the hosts where
they can fit in.

• VBP consists of the FF and BF family of algorithms.
• Mesos [30] uses a resource offer mechanism that

achieves high data locality and scalability within the
data center. It is a more sophisticated opportunistic
algorithm than the Opportunistic. In the evalua-
tion, we compared our algorithm to Mesos with real
applications.

B. Results

We first present the experimental results of the simu-
lation. Fig. 4 compares our algorithm to the baseline al-
gorithms across several aspects. As shown in the figure,
the Opportunistic strategy performs the worst in cost
efficiency since it does neither task packing nor own the
awareness of egress cost. This follows intuition since this
scheduling strategy tends to spread out tasks randomly across
regions thus fragmenting resource utilization on the hosts
and leading to high cost in host subscription and egress
fees. In contrast, the cost-aware strategy saves up to
55.2% and 89.3% of the host subscription and egress cost as
compared to the Opportunistic, respectively. Although
saving comparably 53.3% in host subscription cost due to
the effective consolidation of tasks into a few hosts as
indicated in the figure, the VBP only reduces 13.5% of the
egress cost. This is mainly because VBP is oblivious to data
locality and the egress cost model, it scales out applications
across cloud regions thus causing excessive cost in egress



network traffic. In comparison, by grouping tasks and or-
dering hosts respecting data locality, the cost-aware is
able to schedule tasks in proximity to their input data and
radially scales out applications centered around their anchor.
Effectively, the algorithm favors cost-efficient hosts when
placing applications and therefore achieves the greatest cost
saving. As a consequence of the high levels of data-locality
achieved by the algorithm, the cost-aware incurs the least
delay due to data transmission and network congestion.
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Fig. 4: Comparison of egress cost, host subscription cost, average number
of hosts used and application runtime. cost-aware saves up to 55.2%
and 89.3% of the cost for host subscription and egress traffic.

Interestingly, we observe the cost-aware also achieves
the least average application runtime as compared to the
baseline strategies. After careful analysis of the simulation
data, we find that the runtime improvement is mostly due
to reduced data transfer time. As illustrated in Fig. 5,
the cost-aware saves up to 90.4% of the data transfer
time per task. Notably, VBP performs the worst due to
the significant delay caused by network congestion, which
represents 47.2% of the data transfer time. This result
highlights the importance of taking into account the net-
work bandwidth for making scheduling decisions in dis-
tributed cloud environments. More specifically, by virtue of
its network obliviousness the VBP places tasks onto hosts
with bandwidth-limited network paths to their anchor and
introduces data transmission delays. To make things worse,
the task packing tends to create hot spots, where excessive
network exacerbates congested paths. We also notice that
the VBP results in higher host subscription cost although it
consolidates tasks into fewer hosts than cost-aware. This
is mainly due to the slow data transfers greatly prolonging
the host provisioned time when using VBP.

Since the bandwidth factor outweighs other factors in the
host scoring function, the cost-aware algorithm is able
to avoid the congestion dynamically and trade financial cost
for load balancing in the long run.

Fig. 6 shows total cost as a function of number of
applications concurrently running in PIVOT. As observed,
when the system is lightly loaded, i.e., 10−100 applications,
the cost-aware avoids egress cost by containing limiting
the footprint of an application within a cloud region. As
the number of applications increases, we observe that all
the algorithms scale out the applications by placing tasks
across multiple regions as reflected in the increasing cost for
host subscription and egress traffic. Nevertheless, with the
cost-aware strategy the egress cost increases at a much
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Fig. 5: Average data transfer time per task. cost-aware saves up to 90.4%
of data transfer time due to strategic selection of fast network path and
avoidance of network congestion.
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Fig. 6: Variation of cloud expenses with increasing number of concurrently
running applications. Despite the lowest egress and host subscription cost,
cost-aware achieves mildest cost increase as applications scale up
lower rate as compared to the baseline algorithms.

1) The Hail cluster: A Spark cluster consists of a set
of worker processes (workers) that execute data processing
jobs. In PIVOT, Hail workers are considered long-running
tasks in our workload model. The management of the Hail
workload is managed by the Spark framework and there-
fore is completely opaque to PIVOT. Therefore, our cost-
aware algorithm only takes into account information about
the application locality, i.e., all Hail tasks (workers) are
grouped, when making scheduling decisions. To compare the
effectiveness of our algorithm against VBP and Mesos we
launch Hail clusters with 10 − 100 workers; following we
discuss the results of this experiment.

Fig. 7a illustrates the placement distribution of work-
ers for Hail clusters of varying sizes. As observed, the
cost-aware algorithm co-locates the majority of the work-
ers within the same region and cloud (50.8% and 90.3%,
respectively).

Additionally, in Fig. 8 we show a cost-throughput trade
off analysis for all three scheduling algorithms. Notice that
the origin of the graph represents the optimum point at
which data transfers can be completed instantly without
any monetary cost, and every point represents the average
data transfer throughput and egress cost for a Hail cluster
instance. As observed, most scheduling decisions under the
cost-aware algorithm are close to the optimum while
those under Mesos and VBP are concentrated on the top
right corner of the graph. This follows intuition since by
co-locating workers the cost-aware algorithm improves
data locality (as reflected in throughput) and reduces egress
cost. This is in contrast to the low throughput resulting



from the sparse distribution of workers when using Mesos
and VBP. Note the outlier placement decisions landing at
the far top right corner under the cost-aware scheduler.
These outliers reveal the limitation of application-locality-
based scheduling in that application-locality does not imply
data-locality in a distributed system (an assertion valid in
centralized environments, e.g., single node). We argue that
considering the limited information provided by the appli-
cation to the scheduler, the cost-aware strikes a good
trade-off between cost and data locality improvement.
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Fig. 7: CDF of worker co-locations/data transferred for Hail clusters/CWL
workflows in different scopes, respectively. cost-aware effectively co-
locates the workers/tasks for improved data locality and less egress cost.

0 1 2 3 4
Inverse of throughput (s/Gb)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Av
g.

 e
gr

es
s c

os
t (

$/
GB

)

Mesos Cost-Aware VBP

Fig. 8: Footprints of the Hail cluster deployments in the cost-throughput
space. Most deployments by cost-aware are clustered in proximity to
the optimum, while those by the baselines mostly distributed at the far end.

2) CWL workflows: CWL workflows are representative of
the applications considered in our earlier simulation analysis.
More specifically, data dependencies among workflow jobs
are defined in the CWL workflow specification – described as
input and output files for each step of the workflow. Thus, the
scheduling algorithm can take advantage of this additional
information to infer data locality accurately when making
placement decisions.

In Fig. 7b we notice that the locality of interdependent
tasks which read their input data from a preceding task
increases significantly under the cost-aware scheduler. A
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Fig. 9: Average egress cost incurred by running the CWL workflows.
cost-aware saves up to $2,092 (92.2%) in total for 30 workflow runs.
more detailed analysis of our results shows that once the
anchor tasks are placed, the scheduling strategy makes a best
effort to balance locality and performance as reflected by the
clustering of descendent tasks.

Recall that cross-region cost is significant, therefore we
are concerned with keeping data transfers within cloud
regions. Note that in Fig. 7b, 9.1%, 20.4%, and 72.1% of
data transfers were kept within a region using the Mesos,
VBP, and cost-aware schedulers, respectively. The steep
CDF slope of the cost-aware strategy demonstrates the
effectiveness of our algorithm; only 4.9% of transfers span
clouds compared to 18.9% and 49.0% for VBP and Mesos,
respectively. Turning to Fig. 9 we see a drastic reduction
in egress charges, and a shift from charges mostly being
from cross-cloud in Mesos (89.2%) and VBP (60.2%), to
charges being mostly from cross-region within a cloud in
cost-aware (53.4%).

VI. RELATED WORK

VM and container packing. VM packing is a well-studied
problem [20] [21] [33] that aims at packing VMs into
the least number of physical machines. The problem is
generalized as a MDVPP problem and a family of FF-
[33] and BF-based [21] heuristics have been developed and
thoroughly studied. [33] provides a comprehensive summary
of heuristics for the problem. More recently, the packing
approaches are extended to applications such as data stream-
ing [34] for optimal operator placement in the cluster. With
the emergence of containers and their adoption in the cloud,
there is a rising interest in packing containers into the least
number of VMs to minimize VM subscription cost, which
is analogous with VM packing. Stratus [24] has developed
a cost-aware container scheduler that minimizes the VM
instance hour and the associated cost in the cloud. These
works partially share the same objective with ours and
provide intuitions for our algorithm. However, we extend
them into a cross-cloud context and investigate the impact
of egress cost within and across clouds, which is unique
in this context. Our evaluation also demonstrates that it is
sub-optimal to directly apply existing VBP solutions in the
cross-cloud context due to the absence of cost awareness.
Geo-distributed data locality. Recent works recognize the
increasing importance of data locality in the context of geo-
distributed computing and data analytics [32] [25] [31] [35].
Awan [32] develops a locality-aware scheduler for geo-
distributed data-intensive applications leveraging the ex-
plicit task runtime and data placement. DRASH [25] and
Cachalot [31] dynamically replicate and cache commonly



used data across geo-distributed resources to enhance data
locality.
Cloud agnosticism. Only a few research works explore
the cloud-agnostic and multi-cloud solutions for running
distributed applications, and most of them were done prior
to the widespread adoption of container technologies, which
drastically change the landscape of cloud agnosticism. [27]
classifies a stack of cloud solutions for easing the heterogene-
ity and enhancing inter-operability among clouds. [36] and
[37] develop multi-cloud storage systems with bandwidth
and cost efficiency in mind. PIVOT addresses all aspects
of resource abstraction in a holistic manner.

VII. CONCLUSION AND FUTURE WORKS

We introduce PIVOT as a holistic cloud-agnostic sys-
tem, which enables seamless execution and scaling of data-
intensive applications across geo-distributed regions and
clouds. More importantly, we develop an innovative cost-
aware scheduling algorithm that effectively reduces up to
55% and nearly 92% of VM subscription and egress cost for
applications running across clouds, respectively. Particularly,
with the data locality inference approach adopted in the al-
gorithm, the algorithm effectively enhances the data locality
and achieves up to 10x speedup in data transfers.

We look forward to exploring the possibility of introducing
spot/preemptive VMs into the system to further reduce the
VM subscription cost. We are also interested in adoption of
distributed caching in PIVOT in order to improve locality
of commonly used data and save additional egress cost.

REFERENCES

[1] Apache Spark. https://spark.apache.org/.
[2] Ceph. https://ceph.com/.
[3] Ceph CRUSH Maps. http://docs.ceph.com/docs/mimic/rados/

operations/crush-map/.
[4] CephFS Docker volume plugin. https://github.com/dcvan24/cephfs-

docker-volume-plugin.
[5] DataBiosphere/topmed-workflows. https://github.com/DataBiosphere/

topmed-workflows.
[6] DC/OS. https://dcos.io/.
[7] DC/OS Marathon Placement Constraints. https://docs.mesosphere.

com/1.12/deploying-services/marathon-constraints/.
[8] Docker. https://www.docker.com/.
[9] Dockstore. https://dockstore.org/.

[10] Galaxy. https://usegalaxy.org/.
[11] GlusterFS. https://docs.gluster.org/en/latest/.
[12] Hail. https://github.com/hail-is/hail.
[13] iperf3. http://software.es.net/iperf/.
[14] Kubernetes Node Affinity. https://kubernetes.io/docs/concepts/

configuration/assign-pod-node/#affinity-and-anti-affinity.
[15] NIH Data Commons Pilot. https://commonfund.nih.gov/commons.
[16] PIVOT Simulator. https://github.com/heliumdatacommons/pivot-

scheduling.
[17] Registry of Open Data on AWS. https://registry.opendata.aws/noaa-

nexrad/.
[18] Simpy. https://simpy.readthedocs.io/en/latest/index.html.
[19] Peter Amstutz, Michael R. Crusoe, Neboja Tijani, Brad Chapman,

John Chilton, Michael Heuer, Andrey Kartashov, Dan Leehr, Herv
Mnager, Maya Nedeljkovich, Matt Scales, Stian Soiland-Reyes, and
Luka Stojanovic. Common Workflow Language, v1.0. 7 2016.

[20] Anton Beloglazov and Rajkumar Buyya. Adaptive threshold-based
approach for energy-efficient consolidation of virtual machines in
cloud data centers. In MGC@ Middleware, page 4, 2010.

[21] Anton Beloglazov and Rajkumar Buyya. Optimal online deterministic
algorithms and adaptive heuristics for energy and performance efficient
dynamic consolidation of virtual machines in cloud data centers. Con-
currency and Computation: Practice and Experience, 24(13):1397–
1420, 2012.

[22] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou,
Zhengping Qian, Ming Wu, and Lidong Zhou. Apollo: Scalable
and coordinated scheduling for cloud-scale computing. In OSDI,
volume 14, pages 285–300, 2014.

[23] Chandra Chekuri and Sanjeev Khanna. On multi-dimensional packing
problems. In Proceedings of the tenth annual ACM-SIAM symposium
on Discrete algorithms, pages 185–194. Society for Industrial and
Applied Mathematics, 1999.

[24] Andrew Chung, Jun Woo Park, and Gregory R Ganger. Stratus: cost-
aware container scheduling in the public cloud. In Proceedings of the
ACM Symposium on Cloud Computing, pages 121–134. ACM, 2018.

[25] M. W. Convolbo, J. Chou, S. Lu, and Y. C. Chung. DRASH: A
Data Replication-Aware Scheduler in Geo-Distributed Data Centers. In
2016 IEEE International Conference on Cloud Computing Technology
and Science (CloudCom), pages 302–309, December 2016.

[26] György Dósa. The tight bound of first fit decreasing bin-packing
algorithm is ffd (i) 11/9opt (i)+ 6/9. In Combinatorics, Algorithms,
Probabilistic and Experimental Methodologies, pages 1–11. Springer,
2007.

[27] Nicolas Ferry, Alessandro Rossini, Franck Chauvel, Brice Morin, and
Arnor Solberg. Towards Model-Driven Provisioning, Deployment,
Monitoring, and Adaptation of Multi-cloud Systems. pages 887–894,
June 2013.

[28] Hans Frenk, János Csirik, Martine Labbé, and Shuzhong Zhang. On
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