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Abstract

In this paper, we provide a mathematical framework for the generation and application of contingency
tables with bounds in situations where obtaining exact frequency distributions is not possible. We focus
on the Integrated Clinical and Environmental Exposures Service (ICEES). ICEES is an open service that
provides access to sensitive clinical data that have been integrated with public exposures data. The concept
of bounded contingency tables is motivated by ICEES’ privacy restrictions, which prohibit the release of
electronic health record data on cohorts of fewer than 10 patients. While this service has unique limitations,
the concept of bounded contingency tables is easily generalizable, and has been previously explored by others
in the context of privacy restrictions imposed on open clinical data.

Introduction

In this paper, we provide a mathematical framework for the generation and application of contingency tables
with bounds in situations where obtaining exact frequency distributions is not possible. We focus on the
Integrated Clinical and Environmental Exposures Service (ICEES). ICEES is an open service that provides
access to sensitive clinical data that have been integrated with public exposures data (Fecho et al. 2019).
The concept of bounded contingency tables is motivated by ICEES’ privacy restrictions, which prohibit the
release of electronic health record data on cohorts of fewer than 10 patients. While this service has unique
limitations, the concept of bounded contingency tables is easily generalizable, and has been previously
explored in the context of privacy restrictions by Dobra and Fienberg (2001).

Contingency Tables

A contingency table is a specific way to represent a collection of realizations of random variables. Let X1, X2

be random variables on discrete supports F1 = {x11, x12, x13}, F2 = {x21, x22}. Then an example of a
contingency table is

x11 x12 x13

x21 1 2 1
x22 0 0 4
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where, for example, 4 is the number of observations of X1 = x13 and X2 = x22 simultaneously. Let
X1, X2, ..., Xn be random variables on supports (which we assume are discrete) F1,F2, . . . ,Fn. Then, the
observed frequencies of events may be viewed as a function

ϕ :
∏
i

Fi → N (1)

where ϕ(x1, . . . , xn) is the observed occurences of X1 = x1, . . . , Xn = xn. We call ϕ a “frequency distri-
bution”. An n-variate contingency table is a specific way of representing ϕ. Namely, by listing rows of the
form

x1 x2 · · · xn y

to represent the fact that ϕ(x1, x2, . . . , xn) = y. Naturally this requires
∏
i |Fi| rows unless rows with zeros

are pruned or intervals in the supports are clustered together. For example, the first table in this format
would be

x11 x21 1
x11 x22 0
x12 x21 2
x12 x22 0
x13 x21 1
x13 x22 4

Bounded Contingency Tables

Suppose that instead of knowing the frequencies ϕ of random variables, we know only a series of lower and
upper bounds on them. Let F1,F2, ...,Fn again be the supports of the random variables X1, X2, ..., Xn.
Then let G be a partition of

∏
i Fi. Then suppose that there are functions L,U : G → N where

L(g) ≤
∑

(x1,...,xn)∈g

ϕ(x1, ..., xn) ≤ U(g) ∀g ∈ G (2)

thus, U and L provide upper and lower bounds on the sums of frequencies in collections of simultaneous
events. In the context of a contingency table, U and L can be interpreted as providing upper and lower
bounds on the sums of collections of rows of the table. These bounds can be exact, and each collection of
rows can also be a single row, meaning that g = {(x1, ..., xn)} ∈ G. In total we will call the objects (G, L, U)
a “bounded contingency table”.

More generally, if S is any set, G a partition of S and U,L : G → N are functions where L ≤ U , we call
(G, L, U) a bounded contingency table which “acts on S”. we call S the “rows” of the table, G the “row
groupings”, and U,L the “bounds”.

Given a bounded contingency table T = (G, L, U) and frequencies ϕ we say that ϕ satisfies T if its frequencies
are consistent with the bounds of T , i.e. if (2) is satisfied. Let

M(T ) = {ϕ|ϕ satisfies T} (3)

Then

|M(T )| =
∏
g∈G

U(g)∑
k=L(g)

((
|g|
k

))
=
∏
g∈G

U(g)∑
k=L(g)

(
|g|+ k − 1

k

)
(4)

where
((
|g|
k

))
is the multiset coefficient. This is because for each grouping of rows g ∈ G we may separately

choose between L(g) and U(g) observations to ‘deposit’ in any of the |g| rows, and the number of ways to
deposit k observations among |g| rows is the multiset coefficient.
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Creation of Bounded Contingency Tables

The Integrated Clinical and Environmental Exposures Service (ICEES) provides open access to clinical data
that have been integrated with public exposures data (Fecho et al. 2019). The data are accessible via
an open application programming interface (OpenAPI), and the service supports functionalities that allow
users to create cohorts and examine bivariate contingencies. However, the service is subject to regulatory
constraints that prohibit the creation of cohorts of < 10 patients. We identify an approach for using ICEES
cohort creation and bivariate functionalities to create multivariate contingency tables that support regres-
sion analysis and machine learning (Fecho et al. 2022). Due to the regulatory constraints, the multivariate
approach results in data loss. Here, we consider the bounds of data loss in the context of ICEES.

Consider again an ordering of random variables X1, X2, ..., Xn with supports F1,F2, ...,Fn which we will
assume are discrete. Suppose that there is an underlying multivariate frequency distribution given by the
function

ϕ :

n∏
i=1

Fi → N (5)

For any k ≤ n consider the function giving “incomplete” frequencies, that is, frequencies not broken down
by the later variables

ϕk :

k∏
i=1

Fi → N (6)

In this case ϕn = ϕ is the total n-variate contingency table frequencies. Since these functions represent
frequencies we can marginalize them

ϕ1(x1) =
∑
y∈F2

ϕ2(x1, y) (7)

and so on. Through the ICEES API we can create a “cohort” which is a vector of the form

(c1, c2, . . . , ck) (8)

for some k ≤ n. From that cohort we can obtain a bivariate table, which gives us the value of every frequency
of the form

ϕk+2(c1, c2, . . . , ck, xk+1, xk+2), xk+1 ∈ Fk+1, xk+2 ∈ Fk+2 (9)

There is a threshold T where if a cohort has less than T observations associated with it, meaning that if

ϕk(c1, c2, . . . , ck) < T (10)

then the cohort creation will fail and no information can be gained. In this case T = 10. If we want
a complete contingency table, the first thing to try would be to look at every possible cohort of length
k = n− 2 and create a bivariate table, which would give every frequency of the form

ϕn(c1, . . . , cn−2, xn−1, xn) (11)

And thus every frequency of length n, completing the table. However, many cohorts will be too small to
make, and thus many bivariate tables will not be produced, leaving many rows of the contingency table
blank. To remedy this we use the following algorithm to make a bounded contingency table:

1. Start with a bivariate table from an empty cohort (this can be made assuming the total number of all
observations is greater than T ). Then we know all frequencies of the form

ϕ2(x1, x2), x1 ∈ F1, x2 ∈ F2 (12)

and have obtained a 2-variate contingency table.
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2. Suppose the table is k-variate. This process will be done to move to a k+1-variate bounded contingency
table until the table is a complete n-variate table. Assume that for every k-length cohort of the form
r = (r1, r2, . . . , rk) we either know ϕk(r) or we know that r ∈ g for some g ∈ G and we know the
bounds L(g), U(g) of this row grouping’s combined frequencies. Apply this algorithm to every row
r = (r1, r2, . . . , rk):

(a) If we know ϕ(r), then this implies that we were able to construct a bivariate table from

(r1, r2, . . . , rk−2) (13)

Attempt now to create a bivariate table from (r1, r2, . . . , rk−1).

(b) If we can construct a cohort in this way, a bivariate table can be made and we can obtain all
frequencies of the form

ϕk+1(r1, r2, . . . , rk−1, xk, xk+1), xk ∈ Fk, xk+1 ∈ Fk+1 (14)

Add these frequencies to the new k + 1-variate table.

(c) If a cohort cannot be made from (r1, . . . , rk−1), then note that∑
y∈Fk+1

ϕk+1(r1, . . . , rk, y) ≤ ϕk(r1, . . . , rk) (15)

Hence, there is an upper bound on the sum of frequencies in rows in the set

g = {(r1, r2, . . . , rk, y)|y ∈ Fk+1} (16)

Add g to G as a row grouping with an upper bound of U(g) = ϕk(r) and a lower bound of
L(g) = 0.

(d) If the frequency ϕk(r) is unknown but there are cumulative bounds, simply subdivide this row
into rows of the form (r1, . . . , rk, y), y ∈ Fk+1 and retain their prior bounds.

This process will end with an n-variate table composed of individual rows with known frequencies, and
groupings of rows with unknown frequencies and upper bounds. The individual rows with known frequencies
are still technically groupings of rows, just of size one each and with perfect bounds.

In the ICEES OpenAPI, the “supports” on contingency tables are not actual supports because they are
not comprehensive as they do not account for undefined values. For example, logically speaking, a human
must either have asthma or not, and ICEES tables only display patients that do or do not have asthma,
but some patients do not have a value for “asthma” defined for them, and thus they are excluded when the
“asthma” variable is introduced into the table. This is why equation (15) has a less than or equal to sign.
Note that, given multiple bounded tables of this sort, an algorithm proposed by Buzzigoli and Giusti (1999),
and modified by Dobra and Fienberg (2001), can be used to narrow the relevant bounds.

Inference on Bounded Contingency Tables

Classical statistical inference takes place on observed frequencies ϕ generally by making a test statistic t(ϕ)
and performing some decision rule on it (e.g. reject null hypothesis if t(ϕ) > kα). Given a bounded con-
tingency table T , we have a set M(T ) of possible underlying frequency distributions ϕ ∈ M. We assume
can as an uninformative prior that the actual frequencies obscured by the bounds of the table are uniformly
distributed in M(T ).

While it is difficult to mathematically describe this distribution of tables, one can algorithmically select a
uniformly random table fromM(T ) by simply going through every grouping g ∈ G, picking a uniform random
number in {L(g), L(g) + 1, . . . , U(g)}, and allocating that number of observations one by one between every
row in the grouping of rows uniformly. This is still problematic, though, because the number of possible
underlying frequencies, |M(T )|, can be massive even in small tables.
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Algebraic Properties of Frequencies

One can consider a large variety of operations on known frequencies and contingency tables. For example,
if two frequency distributions ϕ,ψ : S → N act on exactly the same domain then, under independence
assumptions, it is reasonable to simply add them to get a more informative distribution ϕ + ψ. If one
function ϕn is composed of n-variate observations and another ϕk where k < n is composed of k-variate
frequencies using the first k supports that ϕn uses, then one can define a k-variate aggregate table by
marginalizing the excess variables

(ϕk + ϕn)(r) = ϕk(r) +
∑

y1,...,yn−k

ϕn(r1, . . . , rk, y1, . . . , yn−k) (17)

More generally, given ϕF acting on variables with supports F = {F1,F2, . . . ,Fn}, and another collection of
supports H = {H1,H2, . . . ,Hk} one can ‘restrict’ ϕF to these new supports. First, for the sake of notational
simplicity, order the supports in common between F and H:

K = F ∩H = {K1, . . . ,Kj} (18)

Then, make a reduced lower-variate table R(ϕF , H) by marginalizing the excess variables

R(ϕF , H) :
∏
i

Ki → N (19)

R(ϕF , H)(k1, . . . , kj) =
∑

f1,...,fn−j

ϕF (k1, . . . , kj , f1, . . . , fn−j) (20)

To combine any two contingency tables that share any variables/supports in common, we can define a new
|F ∩H|-variate table via

ϕF + ϕH = R(ϕF , H) +R(ϕH , F ) (21)

Notice that this extends the simple form of adding two tables ϕF + ψF when they have the same supports
because

F ⊆ H ⇒ R(ψF , H) = ψF (22)

Hence,

R(ϕF , F ) +R(ψF , F ) = ϕF + ψF (23)

Using this fact we can also rewrite the definition of adding frequencies as

ϕF + ϕH = R(ϕF , F ∩H) +R(ϕH , F ∩H) (24)

Another property is that

R(ϕF + ψF , H) = R(ϕF , H) +R(ψF , H) (25)

Moreover,

R(R(ϕF , H), L) = R(ϕF , H ∩ L) (26)

Using all of these above properties we see that for three collections of supports F,H,L and frequency functions
on those supports
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(ϕF + ϕH) + ϕL = R(R(ϕF , H) +R(ϕH , F ), L) +R(ϕL, F ∩H) (27)

= R(R(ϕF , H), L) +R(R(ϕH , F ), L) +R(ϕL, F ∩H) (28)

= R(ϕF , H ∩ L) +R(ϕH , F ∩ L) +R(ϕL, F ∩H) (29)

= R(ϕF , H ∩ L) +R(R(ϕH , L), F ) +R(R(ϕL, H), F ) (30)

= R(ϕF , H ∩ L) +R(R(ϕH , L) +R(ϕL, H), F ) (31)

= ϕF + (ϕH + ϕL) (32)

So addition of distinct tables is associative.

Even more generally for collections of supports H1, H2, . . . ,Hp and frequency functions ϕH1
, . . . , ϕHp

one
may define their sum as a |

⋂p
j=1Hi|-variate table by

p∑
i=1

ϕHi =

p∑
i=1

R(ϕHi ,

p⋂
j=1

Hj) (33)

Algebraic Properties of Bounded Contingency Tables

We can define the entropy of a bounded table T = (G, U, L) by the entropy of a uniformly distributed variable
over M(T ):

H(T ) = −
∑

ϕ∈M(T )

1

|M(T )|
log

1

|M(T )|
= log |M(T )| (34)

=
∑
g∈G

log

U(g)∑
k=L(g)

(
|g|+ k − 1

k

)
(35)

Suppose that ϕ : S → N is a frequency distribution. In most cases we would have S =
∏
i Fi for some

supports Fi. Let

N (ϕ) = {T |T is satisfied by ϕ} (36)

Be the set of bounded contingency tables acting on the same set as ϕ whose bounds are satisfied by the
observed frequencies ϕ. Let G be a partition of S, so it is a possible row grouping for bounded tables in
N (ϕ). Then let

N (ϕ,G) = {T |T is satisfied by ϕ and has groupings G} (37)

Such that

N (ϕ) =
⋃

G partitions S

N (ϕ,G) (38)

Clearly some bounded tables will be more useful than others. We seek to order these tables by how infor-
mative they are. The most obvious way to do this is order them by H(T ), however this is only useful for
deciding which table you would prefer if you could only have one or the other. In other words, ordering
bounded tables in this manner would be saying that for T1, T2 ∈ N (ϕ)

T1 ≥ T2 ⇔ |M(T1)| ≤ |M(T2)| (39)

But a stronger and more useful notion of ordering would be that

T1 ≥ T2 ⇔M(T1) ⊆M(T2) (40)

6



or, equivalently,

T1 ≥ T2 ⇔M(T1) ∩M(T2) =M(T1) (41)

If this were the case, then having T1 and T2 at the same time would tell us absolutely nothing useful com-
pared to simply having T1. We are going to try and describe this ‘informativeness’ order on N (ϕ).

First, consider only the case of applying this ordering to N (ϕ,G) for some fixed row grouping G. Let
T1 = (G, U1, L1) and T2 = (G, U2, L2) ∈ N (ϕ,G) be two bounded contingency tables. We will create a
partial order on N (ϕ,G) by saying that

T1 ≤ T2 ⇔ U1 ≥ U2 and L1 ≤ L2 (42)

So that a table is lesser than another table if its bounds are weaker.
This partial order forms a lattice because each two elements have a unique greatest lower bound T1 ∧T2 and
lowest greater bound T1 ∨ T2

T1 ∧ T2 = (K,G,max(U1, U2),min(L1, L2)) (43)

T1 ∨ T2 = (K,G,min(U1, U2),max(L1, L2)) (44)

Let 1G = (G, I, I) where I(g) =
∑
r∈g ϕ(r) is the actual sum of frequencies for each grouping of outcomes.

Then

T1 ∧ 1G = 1G , T1 ∨ 1G = T1 (45)

So on N (ϕ,G), these operations make an infinite lattice with a greatest upper bound of 1G and where higher
elements have lower entropy.

Moreover this is a distributive lattice as

T1 ∧ (T2 ∨ T3) = (T1 ∧ T2) ∨ (T1 ∧ T3) (46)

This poset is locally finite in the sense that intervals (sets of elements greater and lesser than two elements)
are finite. We have

#[T1, T2] =
∏
g∈G

(L2(g)− L1(g))(U1(g)− U2(g)) (47)

Since in each row grouping g ∈ G we are choosing two numbers u, l so that L(g) ≤ l ≤ I(g) ≤ u ≤ U(g).

We return to the general case of N (ϕ). We seek to order tables so that if one is less than the other, then no
new information about the underlying frequencies can be gained whatsoever. The ordering is simple when
the tables have the same row groupings within N (ϕ,G), but more complex in general.
In combinatorics, the notation Π(S) is used for the set of partitions of a set S. So

N (ϕ) =
⋃

G∈Π(S)

N (ϕ,G) (48)

The set of partitions Π(S) is has a natural lattice structure with the relation that for π, σ ∈ Π(S) we have
π ≤ σ if and only if every set in π is a subset of a set in σ.
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The partition lattice on 3 elements

However, in our case, when ordering by informativeness the tables with finer row groupings will usually be
more informative because they will, in general, have fewer possible underlying frequency distributions. This
makes our ordering somewhat opposite to the natural ordering of partitions.

First, note that the set of maximal elements of N (ϕ,G), that is, tables of the form 1G = (G, IG , IG) for some
row grouping G, is a subposet of N (ϕ) which is isomorphic to the dual partition lattice Π∗(S) (the partition
lattice with reversed ordering) via the map

{(G, IG , IG)|G ∈ Π(S)} → Π∗(S) (49)

1G = (G, IG , IG) 7→ G (50)

That is to say

M(1G1) ⊆M(1G2)⇔ 1G1 ≥ 1G2 ⇔ G1 ≥ G2 (51)

In other words, if we look only at bounded tables with perfect bounds, then they are ordered in terms of
usefulness by the fineness of the partitions of their row groupings. The absolute maximally informative
bounded table on all of N (ϕ) is the ‘trivial’ table with both perfect bounds and where each row grouping
is just a single row. This effectively gives us the exact frequencies ϕ, hence it is the most informative table
possible.

We can visually represent a bounded contingency table as follows: first, enumerate the rows all the tables
will act on S = {x1, x2, . . . , xn}. Then the figure below

represents the table T = (G, U, L) such that G = {{x1, x2}, {x3}} and U({x1, x2}) = 4, U({x3}) = 1 and
L({x1, x2}) = 2, L({x3}) = 0.

In this context we can represent a frequency distribution ϕ by a vector ϕ = (a, b, c) to say that ϕ(x1) =
a,ϕ(x2) = b and so on. For example, a frequency satisfying the above bounded table’s constraints would be
ϕ = (2, 1, 0) because 2 ≤ 2 + 1 ≤ 4 and also 0 ≤ 0 ≤ 1.

An example of ordering of these tables is

Using this notation we might define the ‘concatenation’ of two tables on disjoint supports via

8



Formally, if we have two bounded tables T = (GT , UT , LT ), V = (GV , UV , LV ) acting on disjoint supports
(meaning that GT partitions ST and GV partitions SV where ST ∩ SV = ∅), then we define

T ⊕ V = (GT⊕V , UT⊕V , LT⊕V ) (52)

GT⊕V = GT ∪ GV ∈ Π(ST ∪ SV ) (53)

UT⊕V (g) = UT (g) if g ∈ ST else UV (g) (54)

LT⊕V (g) = LT (g) if g ∈ ST else LV (g) (55)

This operation is associative and commutative.

Lemma 1. Let T be a bounded table decomposable as

T =
⊕
i∈I

Ti (56)

Then
ϕ satisfies T ⇔ ϕ satisfies Ti for all i ∈ I (57)

Put simply, a frequency function satisfies bounds if it satisfies the bounds of every block its divisible into.
This is completely tautological, but worth nothing for proofs. This is useful because it can be extended to
compare multiple tables in the following way:

Theorem 2. Suppose that T, V are bounded contingency tables operating on S =
⋃
i∈I Si. Suppose that

they can be decomposed as

T =
⊕
i∈I

Ti, V =
⊕
i∈I

Vi (58)

Where for all i, Ti and Vi operate on the same set Si. Then

T ≤ V ⇔ Ti ≤ Vi ∀i (59)

Proof. For the rightward direction by contraposition suppose that there were k so that for all i 6= k we
have Ti ≤ Vi but Tk was not less informative Vk. So M(Vk) * M(Tk). Then there would be a function
ϕ ∈ M(Vk) \M(Tk) which broke the bounds of Tk but satisfied the bounds of Vk. Extending this function
in any way that satisfies the bounds of all Vi where i 6= k would yield

ϕ ∈M(V ) \M(T )⇒M(V ) *M(T ) (60)

And so it is not the case that T ≤ V . For the leftward direction if for all i there is Ti ≤ Vi then any function
ϕ which satisfies all of Vi’s bounds must also satisfy Ti’s bounds. So V is more informative than T . Hence
T ≤ V .

Ordering is reflexive, so for any table V we must have V ≤ V . From this we may also conclude that if T has
a disjoint support to that of ϕ’s domain then

T1 ≤ T2 ⇔ T1 ⊕ V ≤ T2 ⊕ V (61)

Hence, there is an order isomorphism

N (ϕ) ' N (ϕ)⊕ V (62)

By a combinatorial argument we also see that

#M(
⊕
i∈I

Ti) =
∏
i

#M(Ti) (63)

We will now solve a special case of ordering. Consider the following tables ordered by informativeness
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Which we can see because ϕ = (2, 0) and ϕ = (0, 2) are satisfied by the rightmost table but not the leftmost,
so the leftmost table is more informative. However on the other hand

This is because ϕ = (1, 1) satisfies the rightmost table but not the leftmost. If we generalize this, we see
that the upper bound on the left has to be less than or equal to the minimum of upper bounds on the right.

Theorem 3. Let T1, T2 ∈ N (ϕ) be bounded contingency tables where G1 = {g1} and G2 is a partition of
g1. Then a necessary and sufficient condition for T1 to be more informative than T2 is

T1 ≥ T2 ⇔M(T1) ⊆M(T2) (64)

U1(g1) ≤ min{U2(g2)|g2 ∈ G2} (65)

and L1(g1) ≥ max{L2(g2)|g2 ∈ G2} (66)

Proof. For the rightward direction by contraposition suppose that (65) and (66) are not satisfied. We aim
to show that (64) is not satisfied. So we have supposed that

U1(g1) > min{U2(g2)|g2 ∈ G2} or (67)

L1(g1) < max{L2(g2)|g2 ∈ G2} (68)

Assume WLOG (67). Pick x ∈ g∗ where g∗ ∈ G2 is the minimizer of U2(g∗). Let γ : S → N be a frequency
function. Let

γ(x) = U1(g1), γ = 0 otherwise (69)

Then ∑
z∈g∗

γ(z) = γ(x) = U1(g1) > U2(g∗) (70)

So γ satisfies the bounds of T1 but not T2 because the bounds for g∗ aren’t satisfied. In other words

γ ∈M(T1) \M(T2) (71)

And so it is not the case that M(T1) ⊆M(T2). This concludes the rightward direction.
For the leftward direction suppose that (65) and (66) are satisfied. We aim to show that (64) is satisfied.
Let ψ satisfy T1. We aim to show ψ satisfies T2 also. We have∑

x∈g1

ψ(x) ≤ U1(g1) ≤ min{U2(g2)|g2 ∈ G2, g2 ⊆ g1} (72)

⇒ ∀g2 ∈ G2

∑
x∈g2

ψ(x) ≤ U1(g1) ≤ U2(g2) (73)

hence ψ satisfies the upper bounds all throughout G2. The case is equivalent for lower bounds. And so
ψ ∈M(T2).

We will now show how tables can be decomposed so that the above theorem can be applied more generally.

Definition 1. We call a restriction of a partition A ∈ Π(S) to a subset c ⊆ S

Rc(A) = {a|a ∈ A, a ∩ c 6= ∅} (74)

And we call the overlap of a partition with a subset

Oc(A) =
⋃

a∈A,a∩c6=∅

a =
⋃
Rc(A) (75)

We see that Rc(A) ∈ Π(Oc(A)).
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Theorem 4. Given partitions A, C ∈ Π(S), A refines C if and only if

Oc(A) = c ∀c ∈ C (76)

Proof. For the rightward direction suppose A refines C. Then every set a such that a ∩ c 6= ∅ is a subset of
c, and A covers all of S, hence ⋃

a∈A,a∩c 6=∅

a = c (77)

For the leftward direction, by contraposition if A did not refine C, then there would exist a set a ∈ A such
that there was no superset of a within C. Pick any c such that a ∩ c 6= ∅, so a has elements not in c. Then
Oc(C) \ c 6= ∅ hence Oc(A) 6= c.

Lemma 5. If A refines C, then A is partitioned by the sets of its restrictions Rc(A) i.e.

{Rc(A)|c ∈ C} ∈ Π(A) (78)

Proof. By observation A is the union of all Rc(A), and no set could be in Rc(A) ∩ Rd(A) since then there
would be a ∩ c 6= ∅ and a ∩ d 6= ∅ hence a ⊆ c, a ⊆ d but then c ∩ d = a 6= ∅ and C is a partition.

Definition 2. Given two partitions A,B ∈ Π(S) and a third partition C ∈ Π(S), we call C a simultaneous
decomposition of A,B if A and B simultaneously refine C, in formal terms

Oc(A) = Oc(B) = c ∀c ∈ C (79)

Here is an example of a simultaneous decomposition of partitions:

A = 1 2|3 | 4 5 (80)

B = 1|2 3 | 4|5 (81)

C = 1 2 3 | 4 5 (82)

We can use a simultaneous decomposition to compare bounded tables. Let T, V be bounded tables on the
same rows, and let C be any simultaneous decomposition of GT ,GV . Then for any c ∈ C we have that
Rc(A), Rc(B) ∈ Π(c). Now decompose T and V in the following way:

T =
⊕
c∈C

Tc =
⊕
c∈C

(Rc(GT ), UT , LT ) (83)

V =
⊕
c∈C

Vc =
⊕
c∈C

(Rc(GV ), UV , LV ) (84)

Then applying Theorem 2 we see that T ≤ V if and only if for all c ∈ C we have Tc ≤ Vc.

Definition 3. Let A,B ∈ Π(S). Then we say that A and B “don’t partially overlap” if

∀a ∈ A∀b ∈ B a ∩ b 6= ∅ ⇒ a ⊆ b ∨ b ⊆ a (85)

For example, the partitions 12|3 and 1|23 have partial overlapping. 12 and 12 don’t have partial overlapping,
and 12 and 1|2 also don’t. The partitions 1|2|34 and 12|3|4 don’t partially overlap either.

Theorem 6. Let A,B ∈ Π(S) have no partial overlappings. Then let

C = {a ∪ b|a ∈ A, b ∈ B, a ∩ b 6= ∅} (86)

Then C is a simultaneous decomposition of A and B, and for every c ∈ C we have that one of Rc(A), Rc(B)
is just {c} and another is a partition of c.
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Proof. Because A,B have no partial overlappings, for any c = a ∪ b ∈ C we must have that either a, b are
disjoint, or one is a subset of another. Thus either a∪ b = a or a∪ b = b. Suppose without loss of generality
that c = a ∪ b = a. Then

Rc(A) = {a ∈ A|a ∩ c 6= ∅} = {a} = {c} (87)

And Rc(B) is composed of subsets of c which cover c, so Rc(B) is a partition of c.

Now, given any bounded tables whose row groupings don’t have partial overlappings, we may decompose
them according to the simultaneous decomposition in Theorem 6 and then use Theorems 2 and 3 to order
the tables.

Discussion

Herein, we provide a framework for the generation and application of bounded contingency tables in the
context of ICEES as a driving use case. The framework we provide is not unique to ICEES, however, but
rather is generalizable to any situation where bounds exist on contingency tables due to imprecise frequency
distributions. The abstract formulation of bounded contingency tables as a partition with two functions also
provides a novel combinatorial object that can be further studied.
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